精英家教网 > 高中数学 > 题目详情
(2013•黄埔区一模)给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0)
,其短轴的一个端点到点F的距离为
3

(1)求椭圆C和其“准圆”的方程;
(2)过椭圆C的“准圆”与y轴正半轴的交点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,求l1,l2的方程;
(3)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围.
分析:(1)利用椭圆和其“准圆”的标准方程及其定义即可得出;
(2)先求出点P的坐标,设出与椭圆相切的直线的方程,并与椭圆的方程联立,利用△=0即可求出切线的斜率,进而可 求出直线l1,l2的方程;
(3)先设出点B、D的坐标并求出点A的坐标,利用向量的数量积得出
AD
AB
,再利用点B在椭圆上即可得出其取值范围.
解答:解:(1)由题意可得:a=
3
c=
2
,b=1,∴r=
(
3
)2+12
=2.
∴椭圆C的方程为
x2
3
+y2=1
,其“准圆”的方程为x2+y2=4;
(2)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取P(2,0),
设过点P且与椭圆相切的直线l的方程为my=x-2,
联立
my=x-2
x2
3
+y2=1
,消去x得到关于y的一元二次方程(3+m2)x2+4m+1=0,
∴△=16m2-4(3+m2)=0,解得m=±1,
故直线l1、l2的方程分别为:y=x-2,y=-x+2.
(3)由“准圆”的方程为x2+y2=4,令y=0,解得x=±2,取点A(2,0).
设点B(x0,y0),则D(x0,-y0).
AB
AD
=(x0-2,y0)•(x0-2,-y0)=(x0-2)2-y02
∵点B在椭圆
x2
3
+y2=1
上,∴
x02
3
+y02=1
,∴y02=1-
x02
3

AD
AB
=(x0-2)2-1+
x02
3
=
4
3
(x0-
3
2
)2

-
3
x0
3

0≤
4
3
(x0-
3
2
)2<7+4
3

0≤
AD
AB
<7+4
3
,即
AD
AB
的取值范围为[0,7+4
3
)
点评:熟练掌握圆锥曲线的定义及性质、直线与圆锥曲线相切问题的解法、斜率的数量积的定义是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黄埔区一模)给定椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,称圆心在原点O、半径是
a2+b2
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为F(
2
,0)
,其短轴的一个端点到点F的距离为
3

(1)求椭圆C和其“准圆”的方程;
(2)若点A是椭圆C的“准圆”与x轴正半轴的交点,B,D是椭圆C上的两相异点,且BD⊥x轴,求
AB
AD
的取值范围;
(3)在椭圆C的“准圆”上任取一点P,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,试判断l1,l2是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)已知集合A={x|0<x<3},B={x|x2≥4},则A∩B=
{x|2≤x<3}
{x|2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)已知tanα=
1
2
tan(β-α)=-
1
3
,则tan(β-2α)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)已知命题“若f(x)=m2x2,g(x)=mx2-2m,则集合{x|f(x)<g(x),
12
≤x≤1}=∅
”是假命题,则实数m的取值范围是
(-7,0)
(-7,0)

查看答案和解析>>

同步练习册答案