精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)是定义在R上的奇函数,且满足f(x+2)=f(x),又当x∈(0,1)时,f(x)=2x-1,则f(log
1
2
6
)的值等于______.
由题意函数y=f(x)满足f(x+2)=f(x),可得其周期是2
又-3=log
1
2
8
log
1
2
6
log
1
2
4
=-2
故-1<log
1
2
6+2
<0,即-1<log2
2
3
<0
,可得1>log2
3
2
>0

∴f(log
1
2
6
)=f(log
1
2
6
+2)=f(log2
2
3

又函数y=f(x)是定义在R上的奇函数
∴f(log
1
2
6
)=f(log2
2
3
)=-f(log2
3
2
)=-2log2
3
2
+1=-
1
2

故答案为:-
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案