【题目】已知关于
的一元二次方程
.
(1)若
,
是一枚骰子掷两次所得到的点数,求方程有两正根的概率;
(2)若
,
,求方程没有实根的概率.
【答案】(1)
(2)![]()
【解析】
本题考查等可能事件的概率,在解题过程中主要应用列举法来列举出所有的满足条件的事件数,这是本题的精华部分.
(1)基本事件(a,b)共有36个,且a,b∈{1,2,3,4,5,6},方程有两个证实数根等价于a-2>0,16-
>0,△≥0,即a>2,-4<b<4,
得到符合题意的事件的基本事件数为4个,故可以求解得到。
(2)设“一元二次方程无实数根”为事件B,则构成事件B的区域为
B={(a,b)∣2≤a≤6,0≤b≤4,
<16},利用面积比得到概率值。
解:(1)基本事件(a,b)共有36个,且a,b∈{1,2,3,4,5,6},方程有两个证实数根等价于a-2>0,16-
>0,△≥0,即a>2,-4<b<4,![]()
设”一元二次方程有两个正实数根“为事件A,则事件A所包含的基本事件为(6,1),(6,2),(6,3),(5,3)共4个,故所求概率为P(A)=
=
.
(2)设“一元二次方程无实数根”为事件B,则构成事件B的区域为
B={(a,b)∣2≤a≤6,0≤b≤4,
<16},其面积为S(B)=
×
×
=4
,故所求概率为P(B)=
=![]()
科目:高中数学 来源: 题型:
【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某礼品店要制作一批长方体包装盒,材料是边长为
的正方形纸板.如图所示,先在其中相邻两个角处各切去一个边长是
的正方形,然后在余下两个角处各切去一个长、宽分别为
、
的矩形,再将剩余部分沿图中的虚线折起,做成一个有盖的长方体包装盒.
![]()
(1)求包装盒的容积
关于
的函数表达式,并求函数的定义域;
(2)当
为多少时,包装盒的容积最大?最大容积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=bcosA.
(1)求
的值;
(2)若sin A=
,求sin(C-
) 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙3人投篮,投进的概率分别是
.
(Ⅰ)现3人各投篮1次,求3人都没有投进的概率;
(Ⅱ)用
表示乙投篮3次的进球数,求随机变量
的概率分布及数学期望
;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,则下列命题中正确的个数是( )
①当
时,函数
在
上是单调增函数;
②当
时,函数
在
上有最小值;
③函数
的图象关于点
对称;
④方程
可能有三个实数根.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
时,求该函数的定义域;
(2)当
时,如果
对任何
都成立,求实数
的取值范围;
(3)若
,将函数
的图像沿
轴方向平移,得到一个偶函数
的图像,设函数
的最大值为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,椭圆
:
的离心率是
,且直线
:
被椭圆
截得的弦长为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若直线
与圆
:
相切:
(i)求圆
的标准方程;
(ii)若直线
过定点
,与椭圆
交于不同的两点
、
,与圆
交于不同的两点
、
,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com