精英家教网 > 高中数学 > 题目详情
1.若平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足($\overrightarrow{a}$+$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=-12,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为-2.

分析 根据向量数量积的公式先求出$\overrightarrow{a}$•$\overrightarrow{b}$=-4,利用向量投影的定义进行求解即可.

解答 解:∵($\overrightarrow{a}$+$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=-12,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,
∴2$\overrightarrow{a}$2-$\overrightarrow{b}$2+$\overrightarrow{a}$•$\overrightarrow{b}$=-12,
即8-16+$\overrightarrow{a}$•$\overrightarrow{b}$=-12,
则$\overrightarrow{a}$•$\overrightarrow{b}$=-4,
则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}$=$\frac{-4}{2}$=-2,
故答案为:-2

点评 本题主要考查向量数量积的计算,根据向量投影的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在锐角△ABC中,内角A、B、C的所对的边分别为a、b、c,若2acosC+c=2b,则$\sqrt{3}$sin$\frac{B}{2}$cos$\frac{B}{2}$+cos2$\frac{B}{2}$的取值范围是($\frac{\sqrt{3}+1}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知具有线性相关关系的两个变量x与y的一组对应数据如表所示,则据此建立的回归直线方程是(  )
x12345
y146811
A.$\widehat{y}$=2x-1B.$\widehat{y}$=2x+1C.$\widehat{y}$=2.4x-1.2D.$\widehat{y}$=2.4x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.△ABC的内角A,B,C所对的边分别为a,b,c,a2+b2-c2=6$\sqrt{3}$-2ab,且C=60°,则△ABC的面积为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若两个圆心角相同的扇形的面积之比为1:4,则这两个扇形的周长之比为(  )
A.1:$\sqrt{2}$B.1:2C.1:4D.1:2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ)+B(A>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的一系列对应值如表:
 x-$\frac{π}{6}$ $\frac{π}{3}$ $\frac{5π}{6}$ $\frac{4π}{3}$ $\frac{11π}{6}$ $\frac{7π}{3}$ $\frac{17π}{6}$
 y-1 1 3 1-1 1 3
(1)根据表格提供的数据求函数f(x)的一个解析式;
(2)对于区间[a,b],规定|b-a|为区间长度,根据(1)的结果,若函数y=f(kx)-f(kx+$\frac{π}{2}$)(k>0)在任意区间长度为$\frac{1}{10}$的区间上都能同时取到最大值和最小值,求正整数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.计算机执行如图所示的程序段后,输出的结果是(  )
A.2B.3C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m-3,m+3),则实数c的值为(  )
A.3B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A(x1,f(x1),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)图象上的任意两点,且初相φ的终边经过点P(1,-$\sqrt{3}$),若|f(x1)-f(x2)|=4时,|x1-x2|的最小值为$\frac{π}{3}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的单调递增区间;
(Ⅲ)当x∈[0,$\frac{π}{6}$]时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案