分析 根据向量数量积的公式先求出$\overrightarrow{a}$•$\overrightarrow{b}$=-4,利用向量投影的定义进行求解即可.
解答 解:∵($\overrightarrow{a}$+$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=-12,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,
∴2$\overrightarrow{a}$2-$\overrightarrow{b}$2+$\overrightarrow{a}$•$\overrightarrow{b}$=-12,
即8-16+$\overrightarrow{a}$•$\overrightarrow{b}$=-12,
则$\overrightarrow{a}$•$\overrightarrow{b}$=-4,
则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}$=$\frac{-4}{2}$=-2,
故答案为:-2
点评 本题主要考查向量数量积的计算,根据向量投影的定义是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 1 | 2 | 3 | 4 | 5 |
| y | 1 | 4 | 6 | 8 | 11 |
| A. | $\widehat{y}$=2x-1 | B. | $\widehat{y}$=2x+1 | C. | $\widehat{y}$=2.4x-1.2 | D. | $\widehat{y}$=2.4x-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1:$\sqrt{2}$ | B. | 1:2 | C. | 1:4 | D. | 1:2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | -$\frac{π}{6}$ | $\frac{π}{3}$ | $\frac{5π}{6}$ | $\frac{4π}{3}$ | $\frac{11π}{6}$ | $\frac{7π}{3}$ | $\frac{17π}{6}$ |
| y | -1 | 1 | 3 | 1 | -1 | 1 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com