精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=Asin(ωx+φ)+B(A>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的一系列对应值如表:
 x-$\frac{π}{6}$ $\frac{π}{3}$ $\frac{5π}{6}$ $\frac{4π}{3}$ $\frac{11π}{6}$ $\frac{7π}{3}$ $\frac{17π}{6}$
 y-1 1 3 1-1 1 3
(1)根据表格提供的数据求函数f(x)的一个解析式;
(2)对于区间[a,b],规定|b-a|为区间长度,根据(1)的结果,若函数y=f(kx)-f(kx+$\frac{π}{2}$)(k>0)在任意区间长度为$\frac{1}{10}$的区间上都能同时取到最大值和最小值,求正整数k的最小值.

分析 (1)由表格可得A+B=3,-A+B=-1,求得A和B的值,再根据周期性求得ω=1,根据五点法作图求得φ,可得函数的解析式.
(2)先求出函数y=f(kx)-f(kx+$\frac{π}{2}$)的解析式,再根据它的周期小于或等于$\frac{1}{10}$,求得正整数k的最小值.

解答 解:(1)对于函数f(x)=Asin(ωx+φ)+B(A>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$),
由表格可得A+B=3,-A+B=-1,
求得A=2,B=1.
再根据$\frac{2π}{ω}$=$\frac{17π}{6}-\frac{5π}{6}$,求得ω=1.
再根据五点法作图可得1×$\frac{5π}{6}$+φ=$\frac{π}{2}$,可得φ=-$\frac{π}{3}$,
∴f(x)=2sin(x-$\frac{π}{3}$)+1.
(2)函数y=f(kx)-f(kx+$\frac{π}{2}$)=2sin(kx-$\frac{π}{3}$)-2sin[kx+$\frac{π}{2}$-$\frac{π}{3}$]=2sin(kx-$\frac{π}{3}$)-2cos(kx-$\frac{π}{3}$)=2$\sqrt{2}$sin(kx-$\frac{π}{3}$-$\frac{π}{4}$)=2$\sqrt{2}$sin(kx-$\frac{7π}{12}$)(k>0)
在任意区间长度为$\frac{1}{10}$的区间上都能同时取到最大值和最小值,
∴$\frac{2π}{k}$≤$\frac{1}{10}$,即 k≥20π,
故正整数k的最小值为63.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A和B,由周期求出ω,由五点法作图求出φ的值,正弦函数的周期性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知椭圆$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{9}$=1(m为实数)的左焦点为(-4,0),则该椭圆的离心率为(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了解“网络游戏对当代青少年的影响”做了一次调查,共调查了30名男同学、20名女同学.调查的男生中有10人不喜欢玩电脑游戏,其余男生喜欢玩电脑游戏;而调查的女生中有5人喜欢玩电脑游戏,其余女生不喜欢电脑游戏.
(1)根据以上数据填写如下2×2的列联表:
性别
对游戏态度
男生女生合计
喜欢玩电脑游戏20525
不喜欢玩电脑游戏101525
合计302050
(2)根据以上数据,能否在犯错误的概率不超过0.005的前提下认为“喜欢玩电脑游戏与性别关系”?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.-300°角终边所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足($\overrightarrow{a}$+$\overrightarrow{b}$)•(2$\overrightarrow{a}$-$\overrightarrow{b}$)=-12,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,两个变量具有相关关系的是(  )
A.(1)(3)B.(1)(4)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设向量$\overrightarrow{a}$=(m,-1),$\overrightarrow{b}$=(1,2),若$\overrightarrow{a}⊥\overrightarrow{b}$,则m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.随着我市九龙江南岸江滨路建设的持续推进,未来市民将新增又一休闲好去处,据悉南江滨路建设工程规划配套建造一个长方形公园ABCD,如图所示,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成,已知休闲区A1B1C1D1的面积为4000m2,人行道的宽度分别为4m和10m.
(1)若休闲区的长A1B1=x m,求公园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知z是复数,z-3i为实数,$\frac{z-5i}{2-i}$为纯虚数(i为虚数单位).
(Ⅰ)求复数z;
(Ⅱ)求$\frac{z}{1-i}$的模.

查看答案和解析>>

同步练习册答案