精英家教网 > 高中数学 > 题目详情
17.为了解“网络游戏对当代青少年的影响”做了一次调查,共调查了30名男同学、20名女同学.调查的男生中有10人不喜欢玩电脑游戏,其余男生喜欢玩电脑游戏;而调查的女生中有5人喜欢玩电脑游戏,其余女生不喜欢电脑游戏.
(1)根据以上数据填写如下2×2的列联表:
性别
对游戏态度
男生女生合计
喜欢玩电脑游戏20525
不喜欢玩电脑游戏101525
合计302050
(2)根据以上数据,能否在犯错误的概率不超过0.005的前提下认为“喜欢玩电脑游戏与性别关系”?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.0100.0050.001
k06.6357.87910.828

分析 (1)根据所给的数据,画出列联表;
(2)根据列联表中的数据,代入求观测值的公式,求出观测值,把观测值同临界值进行比较,看到在犯错误的概率不超过0.005的前提下认为“喜欢玩电脑游戏与性别关系”.

解答 解:(1)2×2列联表

          性别
游戏态度
男生女生总计
喜欢玩电脑游戏20525
不喜欢玩电脑游戏101525
总计302050
(2)K2=$\frac{50×(20×15-10×5)^{2}}{30×20×25×25}$≈8.33,
又P(K2≥0.025)=8.33>7.879,
故在犯错误的概率不超过0.005的前提下认为“喜欢玩电脑游戏与性别关系”.

点评 本题考查独立性检验的应用,解题的关键是正确求出这组数据的观测值,数字运算的过程中数字比较多,不要出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知以点C(t,$\frac{3}{t}}$)(t∈R,t≠0)为圆心的圆过原点O.
(Ⅰ) 设直线3x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(Ⅱ) 在(Ⅰ)的条件下,设B(0,2),且P、Q分别是直线l:x+y+2=0和圆C上的动点,求|PQ|-|PB|的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=e|x|cosx的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知函数f(x)=msin($\frac{π}{2}$x+$\frac{π}{4}$)(m>0)的图象在y轴右侧的最高点从左到右依次为B1、B2、B3、…,与x轴正半轴的交点从左到右依次为C1、C2、C3、….
(1)若m=1,求$\overrightarrow{O{B}_{1}}$•$\overrightarrow{{B}_{1}{C}_{1}}$;
(2)在△OB1C1,△OB2C3,△OB3C5,…,△OBiC2i-1,(i=1,2,3,…)中,有且只有三个锐角三角形,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知具有线性相关关系的两个变量x与y的一组对应数据如表所示,则据此建立的回归直线方程是(  )
x12345
y146811
A.$\widehat{y}$=2x-1B.$\widehat{y}$=2x+1C.$\widehat{y}$=2.4x-1.2D.$\widehat{y}$=2.4x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知Sn为等差数列{an}的前n项和,a1=-1,S4=14,则a4等于(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.△ABC的内角A,B,C所对的边分别为a,b,c,a2+b2-c2=6$\sqrt{3}$-2ab,且C=60°,则△ABC的面积为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ)+B(A>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的一系列对应值如表:
 x-$\frac{π}{6}$ $\frac{π}{3}$ $\frac{5π}{6}$ $\frac{4π}{3}$ $\frac{11π}{6}$ $\frac{7π}{3}$ $\frac{17π}{6}$
 y-1 1 3 1-1 1 3
(1)根据表格提供的数据求函数f(x)的一个解析式;
(2)对于区间[a,b],规定|b-a|为区间长度,根据(1)的结果,若函数y=f(kx)-f(kx+$\frac{π}{2}$)(k>0)在任意区间长度为$\frac{1}{10}$的区间上都能同时取到最大值和最小值,求正整数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C1过点(-2,0),($\sqrt{2}$,$\frac{\sqrt{2}}{2}$),抛物线C2的焦点在x轴上,过点(3,-2$\sqrt{3}$)
(1)求C1、C2的标准方程;
(2)请问是否存在直线l满足条件:①过点C2的焦点F;②与C1交不同两点M、N,且满足$\overrightarrow{OM}⊥\overrightarrow{ON}$?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案