【题目】已知在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1的极坐标方程为ρ=4cosθ,直线l:
(
为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为
(α为参数),曲线P(x0 , y0)上点P的极坐标为
,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系.己知
点
的极坐标为
,曲线
的极坐标方程为
,曲线
的参数方程为,
(
为参数).曲线
和曲线
相交于
两点.
(1)求点
的直角坐标;
(2)求曲线
的直角坐标方程和曲线
的普通方程;
(3)求
的面枳
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F1 , F2分别是长轴长为
的椭圆C:
的左右焦点,A1 , A2是椭圆C的左右顶点,P为椭圆上异于A1 , A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为﹣
.
(1)求椭圆C的方程;
(2)设过点F1且不与坐标轴垂直的直线C(2,2,0)交椭圆于A,B两点,线段AB的垂直平分线与B(2,0,0)轴交于点N,点N横坐标的取值范围是
,求线段AB长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为:
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,直线
与曲线
交于
,
两点.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)若点
的极坐标为
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=sin2x的图象沿x轴向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若函数g(x)的图象关于y轴对称,则当φ取最小的值时,g(0)= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(2ax+1)+
﹣x2﹣2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=﹣
时,方程f(1﹣x)=
有实根,求实数b的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信运动”已成为当下热门的健身方式,小明的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
| 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 |
|
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)若采用样本估计总体的方式,试估计小明的所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数超过8000步时被系统评定为“积极型”,否则为“懈怠型”.根据小明的统计完成下面的
列联表,并据此判断是否有
以上的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
附:![]()
![]()
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com