精英家教网 > 高中数学 > 题目详情
2.下面程序运行后输出的结果为(  ) 
A.3B.5C.4D.0

分析 分析程序中各变量、语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出a的值,模拟程序的循环过程,并用表格对程序运行过程中的数据进行分析,即可得到正确的答案.

解答 解:根据伪代码所示的顺序,
逐框分析程序中各变量、各语句的作用可知:
程序在运行过程中各变量的值如下表示:
是否继续循环   a   j
循环前/0  1
第一圈      是          1  2
第二圈      是          3  3
第三圈      是          1  4
第四圈      是          0  5
第五圈      是          0  6
第六圈      否
故最后输出的a值为:0
故选:D.

点评 本题考查的知识点是循环结构,其中根据已知中的程序的语句分析出程序的功能是解答本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),垂直于x轴的焦点弦的弦长为$\frac{{6\sqrt{5}}}{5}$,直线$x-2y+\sqrt{2}=0$与以原点为圆心,以椭圆的离心率e为半径的圆相切.
(1)求该椭圆C的方程;
(2)过右焦点F的直线交椭圆于A,B两点,线段AB的中点为M,AB的中垂线与x轴和y轴分别交于D,E两点.记△MFD的面积为S1,△OED的面积为S2.求$\frac{{{S_1}{S_2}}}{S_1^2+S_2^2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行抽样调查,调查结果如表所示
喜欢甜品不喜欢甜品总计
南方学生503080
北方学生101020
总计6040100
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”
(2)已知在被调查的北方学生中有4人是数学系的学生,其中2人喜欢甜品,现在从这4名学生中随机抽取2人,求恰有1人喜欢甜品的概率?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
下面的临界表供参考:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,a、b、c分别为A、B、C的对边,若2b=a+c,B=30°,则△ABC的面积为$\frac{3}{2}$,则b的值1+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等差数列{an}的前n项和为Sn,若-a2015<a1<-a2016,则必定有(  )
A.a2016<0,且a2017>0B.a2016>0,且a2017<0
C.S2015<0,且S2016>0D.S2015>0,且S2016<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.点A(2,-3)关于直线y=-x+1的对称点为(  )
A.(3,-2)B.(4,-1)C.(5,0)D.(3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列结构图中,各要素之间表示从属关系的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数$y=\frac{{{x^2}-x+n}}{{{x^2}+1}}(n∈{N^*},且y≠1)$的最大值为an,最小值为bn,且${c_n}=4({a_n}•{b_n}-\frac{1}{2})$.
(1)求函数{cn}的通项公式;
(2)若数列{dn}的前n项和为Sn,且满足Sn+dn=1.设数列{cn•dn}的前n项和为Tn,求证:Tn<5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=-x2+2lnx,g(x)=x+$\frac{a}{x}$
(1)求函数y=f(x)与y=g(x)有相同极值点,求实数a的值;
(2))若对于?x1,x2∈[$\frac{1}{e}$,3](e为自然对数的底数),不等式$\frac{f({x}_{1})-g({x}_{2})}{k-1}$≤1恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案