精英家教网 > 高中数学 > 题目详情
12.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),垂直于x轴的焦点弦的弦长为$\frac{{6\sqrt{5}}}{5}$,直线$x-2y+\sqrt{2}=0$与以原点为圆心,以椭圆的离心率e为半径的圆相切.
(1)求该椭圆C的方程;
(2)过右焦点F的直线交椭圆于A,B两点,线段AB的中点为M,AB的中垂线与x轴和y轴分别交于D,E两点.记△MFD的面积为S1,△OED的面积为S2.求$\frac{{{S_1}{S_2}}}{S_1^2+S_2^2}$的取值范围.

分析 (1)由题意可知$\frac{2{b}^{2}}{a}$=$\frac{{6\sqrt{5}}}{5}$,点到直线的距离公式及离心率公式可知$\frac{丨\sqrt{2}丨}{\sqrt{{1}^{2}+{2}^{2}}}$=$\frac{c}{a}$,利用椭圆的几何性质即可求得a和b的值;
(2)由(1)可知$F(\sqrt{2},0)$,直线AB的斜率不存在,则M,F不合题意,设直线方程,代入椭圆方程,由韦达定理求得M点坐标,根据直线垂直,k•kMD=-1,分别求得k和kMD,根据三角形相似,$\frac{{S}_{1}}{{S}_{2}}$=$\frac{丨MD{丨}^{2}}{丨DO{丨}^{2}}$=$\frac{{{S_1}{S_2}}}{S_1^2+S_2^2}=\frac{1}{{\frac{S_1}{S_2}+\frac{S_2}{S_1}}}$$∈(0,\frac{36}{97})$.

解答 解:(1)由题意可知:$\frac{2{b}^{2}}{a}$=$\frac{{6\sqrt{5}}}{5}$,
由点到直线的距离公式d=$\frac{丨\sqrt{2}丨}{\sqrt{{1}^{2}+{2}^{2}}}$=$\frac{c}{a}$,
由椭圆的几何性质,a2=b2+c2
解得:a3=5,b3=3,
∴椭圆的方程为$\frac{x^2}{5}+\frac{y^2}{3}=1$…(4分)
(2)由(1)知$F(\sqrt{2},0)$,若直线AB的斜率不存在,则M,F不合题意,
∴直线AB的斜率存在且不为0,设其方程为$y=k(x-\sqrt{2})$,
代入$\frac{x^2}{5}+\frac{y^2}{3}=1$中,整理得:$(5{k^2}+3){x^2}-10\sqrt{2}{k^2}x+10{k^2}-15=0$,
由韦达定理可知:${x_1}+{x_2}=\frac{{10\sqrt{2}{k^2}}}{{5{k^2}+3}}$,${y_1}+{y_2}=\frac{{-6\sqrt{2}k}}{{5{k^2}+3}}$…(6分)
∴$M(\frac{{5\sqrt{2}{k^2}}}{{5{k^2}+3}},\frac{{-3\sqrt{2}k}}{{5{k^2}+3}})$,
∵AB⊥MD,
∴k•kMD=-1,
∴$k•\frac{{\frac{{-3\sqrt{2}k}}{{5{k^2}+3}}-0}}{{\frac{{5\sqrt{2}{k^2}}}{{5{k^2}+3}}-{x_D}}}=-1$,
∴${x_D}=\frac{{2\sqrt{2}{k^2}}}{{5{k^2}+3}}$即$D(\frac{{2\sqrt{2}{k^2}}}{{5{k^2}+3}},0)$,
∵△MFD~△OED,
∴$\frac{S_1}{S_2}=\frac{{|MD{|^2}}}{{|DO{|^2}}}=\frac{{{{(\frac{{5\sqrt{2}{k^2}}}{{5{k^2}+3}}-\frac{{2\sqrt{2}{k^2}}}{{5{k^2}+3}})}^2}+{{(\frac{{-3\sqrt{2}k}}{{5{k^2}+3}}-0)}^2}}}{{{{(\frac{{2\sqrt{2}{k^2}}}{{5{k^2}+3}})}^2}}}$,
=$\frac{9}{4}(1+\frac{1}{k^2})>\frac{9}{4}$$\frac{{{S_1}{S_2}}}{S_1^2+S_2^2}=\frac{1}{{\frac{S_1}{S_2}+\frac{S_2}{S_1}}}$$∈(0,\frac{36}{97})$.…(12分)

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,直线的斜率公式,直线垂直的充要条件,三角形相似问题,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=(a2-1)x2+(a-1)x+3写出对任意的x∈R,f(x)>0的一个充分非必要条件a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\left\{\begin{array}{l}sinπx+1,x≤0\\{log_2}(3{x^2}-12x+15),x>0\end{array}\right.$,则函数y=f(x)-1在[-3,3]上所有的零点之和为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.等比数列{an}的前n项和为Sn,若S3是2a1与a2的等差中项,则该数列的公比q=(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,P是直径AB的延长线上一点,过点P作圆O的切线,切点为C,连接AC,若∠CPA=30°,求证:CA=CP.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}\right.$,(θ为参数),直线l经过点P(2,2),倾斜角α=$\frac{π}{3}$,设l与圆C相交于A,B两点,则|PA||PB|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线y=x-1与抛物线y2=2x相交于P、Q两点,抛物线上一点M与P、Q构成△MPQ的面积为$\frac{{3\sqrt{3}}}{2}$,这样的点M有且只有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.计算定积分$\int_0^{\frac{π}{2}}{({3x+sinx})dx}$值是(  )
A.$\frac{{3{π^2}}}{8}-1$B.$\frac{{3{π^2}}}{8}+1$C.$\frac{{3{π^2}}}{4}-1$D.$\frac{{3{π^2}}}{4}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下面程序运行后输出的结果为(  ) 
A.3B.5C.4D.0

查看答案和解析>>

同步练习册答案