精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=(a2-1)x2+(a-1)x+3写出对任意的x∈R,f(x)>0的一个充分非必要条件a=1.

分析 取a=1结合充分必要条件的定义,验证即可.

解答 解:a=1时,f(x)=3>0,成立,
而f(x)>0时,a不一定是1,
故答案为:a=1.

点评 本题考查了充分必要条件的定义,考查特殊值的运用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.F是抛物线y2=2x的焦点,A、B是抛物线上的两点,|AF|+|BF|=8,则线段AB的中点到y轴的距离为(  )
A.4B.$\frac{9}{2}$C.$\frac{7}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用max{a,b}表示a,b两数中的最大值,函数f(x)=max{ax,$\frac{x}{4}$}(a>0,a≠1),若f(x)>$\frac{1}{2}$恒成立,则实数a的取值范围为(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{2}}{2}$,1)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x,y,满足$\left\{\begin{array}{l}x+y=3\\ 1≤x≤2\end{array}\right.$,则22x+y的最大值为(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)、g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=2x,若对x∈[1,2],不等式af(x)+g(2x)≥0恒成立,则实数a的取值范围是(  )
A.[-1,+∞)B.$[{-2\sqrt{2},+∞})$C.$[{-\frac{17}{6},+∞})$D.$[{-\frac{257}{60},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则下面结论正确的是(  )
A.函数f(x)的最小正周期为$\frac{π}{2}$B.φ=$\frac{π}{9}$
C.函数f(x)的图象关于直线x=$\frac{5π}{6}$对称D.函数f(x)在区间[0,$\frac{π}{4}$]上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.(x2-1)(x-2)7的展开式中x3项的系数是-112.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.2名厨师和3位服务员共5人站成一排合影,若厨师甲不站两端,3位服务员中有且只有两位服务员相邻,则不同排法的种数是(  )
A.60B.48C.42D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),垂直于x轴的焦点弦的弦长为$\frac{{6\sqrt{5}}}{5}$,直线$x-2y+\sqrt{2}=0$与以原点为圆心,以椭圆的离心率e为半径的圆相切.
(1)求该椭圆C的方程;
(2)过右焦点F的直线交椭圆于A,B两点,线段AB的中点为M,AB的中垂线与x轴和y轴分别交于D,E两点.记△MFD的面积为S1,△OED的面积为S2.求$\frac{{{S_1}{S_2}}}{S_1^2+S_2^2}$的取值范围.

查看答案和解析>>

同步练习册答案