精英家教网 > 高中数学 > 题目详情
2.F是抛物线y2=2x的焦点,A、B是抛物线上的两点,|AF|+|BF|=8,则线段AB的中点到y轴的距离为(  )
A.4B.$\frac{9}{2}$C.$\frac{7}{2}$D.3

分析 根据抛物线的方程求出准线方程,利用抛物线的定义抛物线上的点到焦点的距离等于到准线的距离,列出方程求出A,B的中点横坐标的和,求出线段AB的中点到y轴的距离.

解答 解:∵F是抛物线y2=2x的焦点,
∴F($\frac{1}{2}$,0),准线方程x=-$\frac{1}{2}$,
设A(x1,y1),B(x2,y2),
∴|AF|+|BF|=x1+$\frac{1}{2}$+x2+$\frac{1}{2}$=8,
∴x1+x2=7,
∴线段AB的中点横坐标为$\frac{7}{2}$,
∴线段AB的中点到y轴的距离为$\frac{7}{2}$.
故选:C

点评 本题考查解决抛物线上的点到焦点的距离问题,解题的关键是利用抛物线的定义将到焦点的距离转化为到准线的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,点$({n,\frac{S_n}{n}})$在直线y=x+4上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b4=8,前11项和为154.
(1)求数列{an}、{bn}的通项公式;
(2)设$f(n)=\left\{\begin{array}{l}{a_n},(n=2l-1,l∈{N^*})\\{b_n},(n=2l,l∈{N^*}).\end{array}\right.$是否存在m∈N*,使得f(m+9)=3f(m)成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若角α的终边经过点(-3λ,4λ),且λ≠0,则$\frac{sinα+cosα}{sinα-cosα}$等于(  )
A.$-\frac{1}{7}$B.$\frac{1}{7}$C.-7D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.钝角△ABC的三边长a=k,b=k+2,c=k+4,则实数k的取值范围为(  )
A.k>2B.k>6C.2<k<6D.2≤k≤6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}是等差数列,且a3+a9=4,那么数列{an}的前11项和等于22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,为了得到函数y=cos(2x+$\frac{π}{6}$)的图象,只需将y=f(x)的图象(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,正视图与俯视图完全相同,则该几何体的体积为(  )
A.$\frac{56π}{3}$B.$\frac{192-8π}{3}$C.$\frac{64-8π}{3}$D.16+16$\sqrt{5}$+4($\sqrt{2}$-1)π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=3sin($\frac{π}{6}$+x)的单调递增区间为[2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=(a2-1)x2+(a-1)x+3写出对任意的x∈R,f(x)>0的一个充分非必要条件a=1.

查看答案和解析>>

同步练习册答案