12£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬µã$£¨{n£¬\frac{S_n}{n}}£©$ÔÚÖ±Ïßy=x+4ÉÏ£®ÊýÁÐ{bn}Âú×ãbn+2-2bn+1+bn=0£¨n¡ÊN*£©£¬ÇÒb4=8£¬Ç°11ÏîºÍΪ154£®
£¨1£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©Éè$f£¨n£©=\left\{\begin{array}{l}{a_n}£¬£¨n=2l-1£¬l¡Ê{N^*}£©\\{b_n}£¬£¨n=2l£¬l¡Ê{N^*}£©.\end{array}\right.$ÊÇ·ñ´æÔÚm¡ÊN*£¬Ê¹µÃf£¨m+9£©=3f£¨m£©³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©½«µã$£¨{n£¬\frac{S_n}{n}}£©$´úÈëÖ±Ïßy=x+4ÉÏ£¬ÇóµÃ${S_n}={n^2}+4n$£¬µ±n=1ʱ£¬a1=S1=5£¬µ±n¡Ý2ʱ£¬an=Sn-Sn-1=2n+3£®Óɼ´bn+2-bn+1=bn+1-bn£¬{bn}ΪµÈ²îÊýÁУ¬$\frac{{11£¨{b_4}+{b_8}£©}}{2}=154$£®b4=8£¬¼´¿ÉÇóµÃ¹«²îd£¬¼´¿ÉÇóµÃ{bn}µÄͨÏʽ£»
£¨2£©ÓÉÌâÒâ¿ÉÖª£¬µ±mÎªÆæÊýʱ£¬m+9ΪżÊý£¬3f£¨m£©=6m+9£¬ÇóµÃ$m=\frac{14}{3}∉{N^*}$£¬ÉáÈ¥£¬Í¬Àíµ±mΪżÊýʱ£¬m+9ÎªÆæÊý£¬ÇóµÃ$m=\frac{33}{7}∉{N^*}$£¨ÉáÈ¥£©£¬¹Ê²»´æÔÚÕýÕûÊým£¬Ê¹µÃf£¨m+9£©=3f£¨m£©³ÉÁ¢£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬µÃ$\frac{S_n}{n}=n+4$£¬¼´${S_n}={n^2}+4n$£®
¹Êµ±n¡Ý2ʱ£¬an=Sn-Sn-1=n2+4n-£¨n-1£©2-4£¨n-1£©=2n+3£®
×¢Òâµ½n=1ʱ£¬a1=S1=5£¬¶øµ±n=1ʱ£¬n+4=5£¬
¡àan=2n+3£¨n¡ÊN*£©£®
ÓÖbn+2-2bn+1+bn=0£¬¼´bn+2-bn+1=bn+1-bn£¨n¡ÊN*£©£¬
¡à{bn}ΪµÈ²îÊýÁУ¬ÓÚÊÇ$\frac{{11£¨{b_4}+{b_8}£©}}{2}=154$£®
¶øb4=8£¬¹Êb8=20£¬$d=\frac{20-8}{4}=3$£¬
¡àbn=b4+3£¨n-4£©=3n-4£¬
¼´bn=b4+3£¨n-4£©=3n-4£¨n¡ÊN*£©£®       ¡­£¨6·Ö£©
£¨2£©$f£¨n£©=\left\{\begin{array}{l}2n+3£¨n=2l-1£¬l¡Ê{N^*}£©\\ 3n-4£¨n=2l£¬l¡Ê{N^*}£©\end{array}\right.$£¬
¢Ùµ±mÎªÆæÊýʱ£¬m+9ΪżÊý£®
´Ëʱf£¨m+9£©=3£¨m+9£©-4=3m+23£¬3f£¨m£©=6m+9
¡à3m+23=6m+9£¬$m=\frac{14}{3}∉{N^*}$£¨ÉáÈ¥£©
¢Úµ±mΪżÊýʱ£¬m+9ÎªÆæÊý£®
´Ëʱ£¬f£¨m+9£©=2£¨m+9£©+3=2m+21£¬3f£¨m£©=9m-12£¬
ËùÒÔ2m+21=9m-12£¬$m=\frac{33}{7}∉{N^*}$£¨ÉáÈ¥£©£®
×ÛÉÏ£¬²»´æÔÚÕýÕûÊým£¬Ê¹µÃf£¨m+9£©=3f£¨m£©³ÉÁ¢£®     ¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁÐͨÏʽ¼°Ç°nÏîºÍ¹«Ê½µÄÓ¦Ó㬿¼²éµÈ²îÊýÁеÄÐÔÖÊ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Ä³ÈýÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬¸ÃÈýÀâ×¶µÄÌå»ýÊÇ12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®°´ÕÕ¹ú¼ÒµÄÏà¹ØË°·¨¹æ¶¨£¬×÷Õߵĸå³êÓ¦¸Ã½ÉÄɸöÈËËùµÃ˰£¬¾ßÌ广¶¨Îª£º¸öÈËÿ´ÎÈ¡µÃµÄ¸å³êÊÕÈ룬¶¨¶î»ò¶¨ÂʼõÈ¥¹æ¶¨·ÑÓúóµÄÓà¶îΪӦÄÉ˰ËùµÃ¶î£¬Ã¿´ÎÊÕÈë²»³¬¹ý4000Ôª£¬Ê×Ïȼõȥÿ´Î¸å³êËùµÃ·ÑÓÃ800Ôª£»Ã¿´ÎÊÕÈëÔÚ4000ÔªÒÔÉϵģ¬Ê×Ïȼõ³ý20%µÄ·ÑÓò¢ÇÒÒÔÉÏÁ½ÖÖÇé¿ö¾ùʹÓÃ20%µÄ±ÈÀý˰ÂÊ£¬ÇÒ°´¹æ¶¨Ó¦ÄÉ˰¶îÕ÷30%£¬ÒÑ֪ijÈ˳ö°æÒ»·ÝÊé¸å£¬¹²ÄÉ˰280Ôª£¬Õâ¸öÈËÓ¦µÃ¸å·Ñ£¨¿Û˰ǰ£©Îª2800Ôª£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èôº¯Êýf£¨x£©=x2+mx+n£¨m£¬n¡ÊR£©ÔÚ[-1£¬1]ÉÏ´æÔÚÁãµã£¬ÇÒ0¡Ün-2m£¼1£¬ÔònµÄȡֵ·¶Î§ÊÇ[-3£¬9-$4\sqrt{5}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÏÂÃæµÄÊý×é¾ùÓÉÈý¸öÊý×é³É£¬ËüÃÇÊÇ£º£¨1£¬2£¬-1£©£¬£¨2£¬4£¬-2£©£¬£¨3£¬8£¬-5£©£¬£¨4£¬16£¬-12£©£¬£¨5£¬32£¬-27£©£¬¡­£¨an£¬bn£¬cn£©£¬ÈôÊýÁÐ{cn}µÄǰnÏîºÍΪSn£¬ÔòS10=-1991£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Éè¡÷ABCµÄÃæ»ýΪS£¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬$4S=\sqrt{3}£¨{b^2}+{c^2}-{a^2}£©$£®
£¨1£©Çó¡ÏA£»
£¨2£©Çó$sin£¨A+{10¡ã}£©[{1-\sqrt{3}tan£¨A-{{10}¡ã}£©}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Çó$f£¨x£©={sin^3}\frac{1}{x}$µÄµ¼Êý$-\frac{3}{{x}^{2}}si{n}^{2}\frac{1}{x}$cos$\frac{1}{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªtan¦È=2£¬Ôòsin2¦È+sec2¦ÈµÄֵΪ$\frac{29}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®FÊÇÅ×ÎïÏßy2=2xµÄ½¹µã£¬A¡¢BÊÇÅ×ÎïÏßÉϵÄÁ½µã£¬|AF|+|BF|=8£¬ÔòÏß¶ÎABµÄÖе㵽yÖáµÄ¾àÀëΪ£¨¡¡¡¡£©
A£®4B£®$\frac{9}{2}$C£®$\frac{7}{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸