精英家教网 > 高中数学 > 题目详情
1.已知tanθ=2,则sin2θ+sec2θ的值为$\frac{29}{5}$.

分析 利用同角三角函数的基本关系,求得要求式子的值.

解答 解:∵tanθ=2,则sin2θ+sec2θ=$\frac{2sinθcosθ}{{sin}^{2}θ{+cos}^{2}θ}$+1+tan2θ=$\frac{2tanθ}{{tan}^{2}θ+1}$+1+tan2θ=$\frac{4}{4+1}$+1+4=$\frac{29}{5}$,
故答案为:$\frac{29}{5}$.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-2ax+a+2,
(1)记f(sinx),x∈R的最大值为M(a),求M(a);
(2)若g(x)=f(x)+|x2-1|在区间(0,3)内有两个零点x1,x2(x1<x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,点$({n,\frac{S_n}{n}})$在直线y=x+4上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b4=8,前11项和为154.
(1)求数列{an}、{bn}的通项公式;
(2)设$f(n)=\left\{\begin{array}{l}{a_n},(n=2l-1,l∈{N^*})\\{b_n},(n=2l,l∈{N^*}).\end{array}\right.$是否存在m∈N*,使得f(m+9)=3f(m)成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)的定义域为I,若对任意的x1、x2∈I,都有|f(x1)-f(x2)|<1,则称函数f(x)为“Storm函数”.现给出下列函数:
①f(x)=-x,x∈[-1,1];     ②f(x)=|x|,$x∈[-\frac{1}{2},1]$;     ③$f(x)=\frac{1}{x-1}$,x∈[2,3];
④f(x)=2x,x∈(0,1);     ⑤f(x)=lnx,x∈[2,4].
则其中是“Storm函数”的是③④⑤.(填写所有符合要求的函数式所对应的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:“?x>0,sinx≥1”,则¬p为(  )
A.?x>0,sinx≥1B.?x≤0,sinx<1C.?x>0,sinx<1D.?x≤0,sin≥1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.一组数据的标准差为s,将这组数据中每一个数据都扩大到原来的2倍,所得到的一组数据的方差是4s2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若角α的终边经过点(-3λ,4λ),且λ≠0,则$\frac{sinα+cosα}{sinα-cosα}$等于(  )
A.$-\frac{1}{7}$B.$\frac{1}{7}$C.-7D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.钝角△ABC的三边长a=k,b=k+2,c=k+4,则实数k的取值范围为(  )
A.k>2B.k>6C.2<k<6D.2≤k≤6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=3sin($\frac{π}{6}$+x)的单调递增区间为[2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z).

查看答案和解析>>

同步练习册答案