精英家教网 > 高中数学 > 题目详情
11.函数y=3sin($\frac{π}{6}$+x)的单调递增区间为[2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z).

分析 令2kπ-$\frac{π}{2}$≤$\frac{π}{6}$+x≤2kπ+$\frac{π}{2}$,求得x的范围,可得f(x)的单调递增区间.

解答 解:令2kπ-$\frac{π}{2}$≤$\frac{π}{6}$+x≤2kπ+$\frac{π}{2}$,
解得2kπ-$\frac{2π}{3}$≤x≤2kπ+$\frac{π}{3}$(k∈Z),
故答案是:[2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z).

点评 本题主要考查正弦函数的单调性,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知tanθ=2,则sin2θ+sec2θ的值为$\frac{29}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.F是抛物线y2=2x的焦点,A、B是抛物线上的两点,|AF|+|BF|=8,则线段AB的中点到y轴的距离为(  )
A.4B.$\frac{9}{2}$C.$\frac{7}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=ex-$\frac{m}{x}$在区间[1,2]上的最小值为1,则实数m的值为e-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=cosφ}\\{y=cos2φ+1}\end{array}\right.$(φ为参数),定P(-1,0).
(1)设直线l与曲线C交于A,B两点,求|AP|•|BP|的值.
(2)过点P作曲线C的切线m(斜率不为0),以原点为极点,x轴的非负半轴为极轴建立极坐标系,求切线m的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,sinA:sinB:sinC=$\sqrt{21}$:4:5,则角A=(  )
A.30°B.150°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.用max{a,b}表示a,b两数中的最大值,函数f(x)=max{ax,$\frac{x}{4}$}(a>0,a≠1),若f(x)>$\frac{1}{2}$恒成立,则实数a的取值范围为(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{2}}{2}$,1)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x,y,满足$\left\{\begin{array}{l}x+y=3\\ 1≤x≤2\end{array}\right.$,则22x+y的最大值为(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.2名厨师和3位服务员共5人站成一排合影,若厨师甲不站两端,3位服务员中有且只有两位服务员相邻,则不同排法的种数是(  )
A.60B.48C.42D.36

查看答案和解析>>

同步练习册答案