精英家教网 > 高中数学 > 题目详情
3.按照国家的相关税法规定,作者的稿酬应该缴纳个人所得税,具体规定为:个人每次取得的稿酬收入,定额或定率减去规定费用后的余额为应纳税所得额,每次收入不超过4000元,首先减去每次稿酬所得费用800元;每次收入在4000元以上的,首先减除20%的费用并且以上两种情况均使用20%的比例税率,且按规定应纳税额征30%,已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为2800元.

分析 由题意,设这个人应得稿费(扣税前)为x元,则280=(x-800)×20%×(1-30%),即可得出结论.

解答 解:由题意,设这个人应得稿费(扣税前)为x元,则280=(x-800)×20%×(1-30%)
所以x=2800,
故答案为:2800元.

点评 本题考查利用数学知识解决实际问题,考查学生的计算能力,正确选择函数模型是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.二项式(2x4-$\frac{1}{3{x}^{3}}$)n的展开式中含有非零常数项,则正整数n的最小值为(  )
A.7B.12C.14D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}为等差数列,且a3=5,a6=11.
(1)求数列{an}的通项公式;
(2)若等比数列{bn}满足b1=3,b2=a1+a2+a3,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-2ax+a+2,
(1)记f(sinx),x∈R的最大值为M(a),求M(a);
(2)若g(x)=f(x)+|x2-1|在区间(0,3)内有两个零点x1,x2(x1<x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.样本数据-2,0,5,3,4的方差是$\frac{34}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将长、宽分别为4和3的矩形ABCD沿对角线AC折起,使二面角D-AC-B等于60°,若A,B,C,D四点在同一球面上,则该球的体积为(  )
A.$\frac{500}{3}π$B.$\frac{125}{6}π$C.100πD.25π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{4|lo{g}_{2}x|,0<x<2}\\{\frac{1}{2}{x}^{2}-5x+12,x≥2}\end{array}\right.$,若存在实数a,b,c,d满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,则a+b+c+d的取值范围是(  )
A.(12,$\frac{25}{2}$)B.(16,24)C.(12,+∞)D.(18,24)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,点$({n,\frac{S_n}{n}})$在直线y=x+4上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b4=8,前11项和为154.
(1)求数列{an}、{bn}的通项公式;
(2)设$f(n)=\left\{\begin{array}{l}{a_n},(n=2l-1,l∈{N^*})\\{b_n},(n=2l,l∈{N^*}).\end{array}\right.$是否存在m∈N*,使得f(m+9)=3f(m)成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若角α的终边经过点(-3λ,4λ),且λ≠0,则$\frac{sinα+cosα}{sinα-cosα}$等于(  )
A.$-\frac{1}{7}$B.$\frac{1}{7}$C.-7D.7

查看答案和解析>>

同步练习册答案