精英家教网 > 高中数学 > 题目详情
6.二项式(2x4-$\frac{1}{3{x}^{3}}$)n的展开式中含有非零常数项,则正整数n的最小值为(  )
A.7B.12C.14D.5

分析 利用二项展开式的通项公式求出展开式的通项,令x的指数为0方程有解.由于n,r都是整数求出最小的正整数n.

解答 解:展开式的通项为Tr+1=Cnr2n-r(-3)-rx4n-7r
令4n-7r=0据题意此方程有解,
∴n=$\frac{7}{4}$r,
当r=4时,n最小为7,
故选:A.

点评 本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.球面上有三点A,B,C组成这个球的一个截面的内接三角形的三个顶点,其中AB=6,BC=8,AC=10,球心到这个截面的距离为球半径的一半,则球的表面积为(  )
A.$\frac{400π}{3}$B.150πC.$\frac{500π}{3}$D.$\frac{600π}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=kx2-lnx(k∈R).
(1)试讨论函数f(x)的单调性;
(2)若不等式f(x)≥0在区间(0,+∞)上恒成立,求k的取值范围,并证明:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+$\frac{ln4}{{4}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<$\frac{n-1}{2e}$(n≥2,n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列三个函数
(1)f(x)=$\sqrt{9-{x^2}}+\sqrt{{x^2}-9}$
(2)f(x)=(x+1)•$\sqrt{\frac{1-x}{1+x}}$
(3)f(x)=$\frac{{\sqrt{4-{x^2}}}}{{|{x+3}|-3}}$
其中具有奇偶性的函数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}满足a1=1,an+an+1=($\frac{1}{4}$)n(n∈{N*),设Sn=a1+4a2+42a3+…+4n-1an,则5S6-46a6=(  )
A.5B.6C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{3}$x3-4x+4.求:
(1)f(x)=$\frac{1}{3}$x3-4x+4的单调区间;
(2)f(x)=$\frac{1}{3}$x3-4x+4的单调区间在[0,3]上的极值及最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某三棱锥的三视图如图所示,该三棱锥的体积是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.按照国家的相关税法规定,作者的稿酬应该缴纳个人所得税,具体规定为:个人每次取得的稿酬收入,定额或定率减去规定费用后的余额为应纳税所得额,每次收入不超过4000元,首先减去每次稿酬所得费用800元;每次收入在4000元以上的,首先减除20%的费用并且以上两种情况均使用20%的比例税率,且按规定应纳税额征30%,已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为2800元.

查看答案和解析>>

同步练习册答案