精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.

分析 (1)分离参数,构造函数,利用导数求出函数的最小值,即可求出m的取值范围;
(2)相当于函数φ(x)=x-2lnx与直线y=a有两个不同的交点,构造函数,求导,求出函数的最值,即可得到a的取值范围.

解答 解:(1)由f(x)≥h(x),得m≤$\frac{x}{lnx}$在(1,+∞)上恒成立.
令g(x)=$\frac{x}{lnx}$,则g′(x)=$\frac{lnx-1}{(lnx)^{2}}$,
当x∈(1,e)时,g′(x)<0;
当x∈(e,+∞)时,g′(x)>0,
所以g(x)在(1,e)上递减,在(e,+∞)上递增.
故当x=e时,g(x)的最小值为g(e)=e.
所以m≤e.
即m的取值范围是(-∞,e].
(2)由已知可得k(x)=x-2lnx-a.函数k(x)在(1,3)上恰有两个不同零点,相当于函数φ(x)=x-2lnx与直线y=a有两个不同的交点.
φ′(x)=1-$\frac{2}{x}$=$\frac{x-2}{x}$,
当x∈(1,2)时,φ′(x)<0,φ(x)递减,
当x∈(2,3)时,φ′(x)>0,φ(x)递增.
又φ(1)=1,φ(2)=2-2ln2,φ(3)=3-2ln3,
要使直线y=a与函数φ(x)=x-2lnx有两个交点,则2-2ln2<a<3-2ln3.
即实数a的取值范围是(2-2ln2,3-2ln3).

点评 本题主要考查了利用导数研究函数的极值,以及函数的零点等有关基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(ax2+x+1)ex
(1)若曲线y=f(x)在x=1处的切线与x轴平行,求a的值,并讨论f(x)的单调性;
(2)当a=0时,是否存在实数m使不等式mx+1≥-x2+4x+1和2f(x)≥mx+1恒成立?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{2}$x2-lnx.
(1)求f(x)的单调区间;
(2)求证:x>1时,f(x)<$\frac{2}{3}$x3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax+$\frac{a-1}{x}$(a∈R),g(x)=lnx.
(1)当a=2时,求函数h(x)=f(x)-g(x)的最小值;
(2)当a>0,对任意x≥1,不等式f(x)-g(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知(x+$\frac{a}{\sqrt{x}}$)6(a>0)的展开式中常数项为240,则(x+a)•(x-2a)2的展开式中x2项的系数为(  )
A.10B.8C.-6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(1)求函数f(x)的单调区间;
(2)对任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=mxex(m∈R),其中f'(0)=1.
(I)求实数m的值;
(II)求函数f(x)在区间[-2,0]的最值;
(III)是否存在实数a,使得对任意的x1,x2∈(a,+∞),当x1<x2时,恒有$\frac{{f({x_2})-f(a)}}{{{x_2}-a}}$>$\frac{{f({x_1})-f(a)}}{{{x_1}-a}}$成立,若存在,求a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.二项式(2x4-$\frac{1}{3{x}^{3}}$)n的展开式中含有非零常数项,则正整数n的最小值为(  )
A.7B.12C.14D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}为等差数列,且a3=5,a6=11.
(1)求数列{an}的通项公式;
(2)若等比数列{bn}满足b1=3,b2=a1+a2+a3,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案