分析 (1)求出f′(x)=x-$\frac{1}{x}$=$\frac{{x}^{2}-1}{x}$,(x>0),由此利用导数性质能求出f(x)的单调递区间.
(2)令$g(x)=\frac{2}{3}{x^3}-\frac{1}{2}{x^2}-lnx$,则${g^'}(x)=\frac{{(x-1)(2{x^2}+x+1)}}{x}$,由此利用导数性质能证明$\frac{1}{2}{x^2}+lnx<\frac{2}{3}{x^3}$.
解答 解:(1)∵f(x)=$\frac{1}{2}$x2-lnx,∴函数f(x)的定义域为(0,+∞),
f′(x)=x-$\frac{1}{x}$=$\frac{{x}^{2}-1}{x}$,(x>0).
由f′(x)>0得,x>1,即f(x)在(1,+∞)上是增函数.
由f′(x)<0得,0<x<1.∴f(x)在(0,1)上是减函数.
∴f(x)的单调递减区间是(0,1),单调递增区间是(1,+∞).…(6分)
证明:(2)令$g(x)=\frac{2}{3}{x^3}-\frac{1}{2}{x^2}-lnx$,
则${g^'}(x)=\frac{{(x-1)(2{x^2}+x+1)}}{x}$,
当x>1时,g′(x)>0,即g(x)在(1,+∞)上是增函数,
故g(x)>g(1),即$\frac{2}{3}{x^3}-\frac{1}{2}{x^2}-lnx>\frac{1}{6}>0$,
∴$\frac{1}{2}{x^2}+lnx<\frac{2}{3}{x^3}$.…(13分)
点评 本题考查函数的单调区间的求法,考查不等式的证明,是中档题,解题时要认真审题,注意导数性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{400π}{3}$ | B. | 150π | C. | $\frac{500π}{3}$ | D. | $\frac{600π}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (-∞,$\frac{1}{4}}$) | C. | (0,$\frac{1}{4}}$] | D. | (0,$\frac{1}{4}}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com