精英家教网 > 高中数学 > 题目详情
7.已知数列{an}为等差数列,且a3=5,a6=11.
(1)求数列{an}的通项公式;
(2)若等比数列{bn}满足b1=3,b2=a1+a2+a3,求数列{bn}的前n项和Sn

分析 (1)利用等差数列的通项公式即可得出.
(2)利用等比数列的通项公式、求和公式即可得出.

解答 解:(1)设等差数列{an}的公差d,∵a3=5,a6=11,
∴$\left\{\begin{array}{l}{a_1}+2d=5\\{a_1}+5d=11\end{array}\right.$,解得a1=1,d=2,
an=1+(n-1)•2=2n-1.
(2)设等比数列{bn}的公比为q,∵b2=a1+a2+a3=9,b1=3,
∴q=3,
∴{bn}的前n项和为${S_n}=\frac{{{b_1}(1-{q^n})}}{1-q}=\frac{{{3^{n+1}}-3}}{2}$.

点评 本题考查了等差数列与等比数列的通项公式、求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{3}$x3-4x+4.求:
(1)f(x)=$\frac{1}{3}$x3-4x+4的单调区间;
(2)f(x)=$\frac{1}{3}$x3-4x+4的单调区间在[0,3]上的极值及最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某三棱锥的三视图如图所示,该三棱锥的体积是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知变量S=sin$\frac{a-b}{3}$π,若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则S≥0的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.亚欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方队员全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有252种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,且满足an=2-3Sn(n∈N*).
(I)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{an+bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.按照国家的相关税法规定,作者的稿酬应该缴纳个人所得税,具体规定为:个人每次取得的稿酬收入,定额或定率减去规定费用后的余额为应纳税所得额,每次收入不超过4000元,首先减去每次稿酬所得费用800元;每次收入在4000元以上的,首先减除20%的费用并且以上两种情况均使用20%的比例税率,且按规定应纳税额征30%,已知某人出版一份书稿,共纳税280元,这个人应得稿费(扣税前)为2800元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.求$f(x)={sin^3}\frac{1}{x}$的导数$-\frac{3}{{x}^{2}}si{n}^{2}\frac{1}{x}$cos$\frac{1}{x}$.

查看答案和解析>>

同步练习册答案