精英家教网 > 高中数学 > 题目详情
6.已知数列{an}的前n项和为Sn,且满足an=2-3Sn(n∈N*).
(I)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{an+bn}的前n项和Tn

分析 (I)利用公式an=Sn-Sn-1判断{an}为等比数列,再得出通项公式;
(II)先求出bn得出{bn}为等差数列,将两数列分别求和得出Tn

解答 解(Ⅰ)当n≥2时,由an=2-3Sn①,得an-1=2-3Sn-1②,
①-②即得4an=an-1
而当n=1时,a1=2-3a1,故${a_1}=\frac{1}{2}$,
因而数列{an}是首项为$\frac{1}{2}$公比为$\frac{1}{4}$的等比数列,
∴${a_n}=\frac{1}{2}•{({\frac{1}{4}})^{n-1}}={({\frac{1}{2}})^{2n-1}},n∈{N^*}$.
(Ⅱ)由(Ⅰ)知${a_n}={({\frac{1}{2}})^{2n-1}}$,故bn=1-2n.
∴{bn}是以-1为首项,以-2为公差的等差数列.
数列{an+bn}的前n项和Tn=(a1+a2+…+an)+(b1+b2+…+bn
=$\frac{\frac{1}{2}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$+$\frac{(-1+1-2n)n}{2}$=$\frac{2}{3}$-n2-$\frac{2}{3•{4}^{n}}$.

点评 本题考查了等差,等比关系的判断,数列的求和公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=mxex(m∈R),其中f'(0)=1.
(I)求实数m的值;
(II)求函数f(x)在区间[-2,0]的最值;
(III)是否存在实数a,使得对任意的x1,x2∈(a,+∞),当x1<x2时,恒有$\frac{{f({x_2})-f(a)}}{{{x_2}-a}}$>$\frac{{f({x_1})-f(a)}}{{{x_1}-a}}$成立,若存在,求a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x+aex(a∈R).
(1)讨论函数f(x)的单调性;
(2)当x<0,a≤1时,证明:x2+(a+1)x>xf′(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}为等差数列,且a3=5,a6=11.
(1)求数列{an}的通项公式;
(2)若等比数列{bn}满足b1=3,b2=a1+a2+a3,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=3sin(2x-$\frac{π}{3}$+φ),φ∈(0,π)满足f(|x|)=f(x),则φ的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-2ax+a+2,
(1)记f(sinx),x∈R的最大值为M(a),求M(a);
(2)若g(x)=f(x)+|x2-1|在区间(0,3)内有两个零点x1,x2(x1<x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.样本数据-2,0,5,3,4的方差是$\frac{34}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{4|lo{g}_{2}x|,0<x<2}\\{\frac{1}{2}{x}^{2}-5x+12,x≥2}\end{array}\right.$,若存在实数a,b,c,d满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,则a+b+c+d的取值范围是(  )
A.(12,$\frac{25}{2}$)B.(16,24)C.(12,+∞)D.(18,24)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:“?x>0,sinx≥1”,则¬p为(  )
A.?x>0,sinx≥1B.?x≤0,sinx<1C.?x>0,sinx<1D.?x≤0,sin≥1

查看答案和解析>>

同步练习册答案