精英家教网 > 高中数学 > 题目详情
2.已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(1)求函数f(x)的单调区间;
(2)对任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

分析 (1)先求出其导函数,再让其导函数大于0对应区间为增区间,小于0对应区间为减区间即可.(注意是在定义域内找单调区间.)
(2)已知条件可以转化为a≥lnx-$\frac{3}{2}$x-$\frac{1}{2x}$恒成立,对不等式右边构造函数,利用其导函数求出函数的最大值即可求实数a的取值范围.

解答 解:(1)f′(x)=lnx+1,
令f′(x)<0得:0<x<$\frac{1}{e}$,
∴f(x)的单调递减区间是(0,$\frac{1}{e}$),
令f'(x)>0得:x>$\frac{1}{e}$,
∴f(x)的单调递增区间是($\frac{1}{e}$,+∞),
(2)∵g′(x)=3x2+2ax-1,由题意2xlnx≤3x2+2ax+1,
∵x>0,
∴a≥lnx-$\frac{3}{2}$x-$\frac{1}{2x}$恒成立 ①,
设h(x)=lnx-$\frac{3x}{2}$-$\frac{1}{2x}$,
则h′(x)=$\frac{1}{x}$-$\frac{3}{2}$+$\frac{1}{2{x}^{2}}$=-$\frac{(x-1)(3x+1)}{2{x}^{2}}$
令h′(x)=0得:x=1,x=-$\frac{1}{3}$(舍去)
当0<x<1时,h′(x)>0;
当x>1时,h'(x)<0
∴当x=1时,h(x)有最大值-2,
若①恒成立,则a≥-2,
即a的取值范围是[-2,+∞).

点评 本题考查了导数求闭区间上函数的最值,利用导数研究函数的单调性,以及不等式恒成立的问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知点P(1,b)是函数f(x)=x3+ax2图象上的一点,在点P处切线的斜率为-3,g(x)=x3+$\frac{t-6}{2}$x2+(t-$\frac{1}{2}$)x-$\frac{1}{2}$(t>0).
(Ⅰ)求a,b的值;
(Ⅱ)当x∈[-1,4]时,求f(x)的最大值和最小值;
(Ⅲ)当x∈[1,4]时,不等式f(x)≤g(x)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x3-ax2(其中a是实数),且f′(1)=-3.
(1)求a的值及曲线y=f(x)在点(1,f(x))处的切线方程;
(2)求f(x)在区间[-1,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=$\frac{lnx}{x}$的最大值为(  )
A.$\frac{1}{e}$B.eC.e2D.-e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.阅读右边的程序,若输出的y=3,则输入的x的值为(  )
A.1B.2C.±2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=kx2-lnx(k∈R).
(1)试讨论函数f(x)的单调性;
(2)若不等式f(x)≥0在区间(0,+∞)上恒成立,求k的取值范围,并证明:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+$\frac{ln4}{{4}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<$\frac{n-1}{2e}$(n≥2,n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}满足a1=1,an+an+1=($\frac{1}{4}$)n(n∈{N*),设Sn=a1+4a2+42a3+…+4n-1an,则5S6-46a6=(  )
A.5B.6C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.亚欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方队员全被淘汰为止,另一方获胜,形成一种比赛过程.那么所有可能出现的比赛过程有252种.

查看答案和解析>>

同步练习册答案