精英家教网 > 高中数学 > 题目详情
10.函数y=$\frac{lnx}{x}$的最大值为(  )
A.$\frac{1}{e}$B.eC.e2D.-e

分析 根据函数的导数与最值的关系即可求出最大值.

解答 解:y′=$\frac{1-lnx}{{x}^{2}}$,x>0
令y′=0,解得x=e,
当x>e时,y′<0,函数单调递减,
当0<x<e时,y′>0,函数单调递增,
∴当x=e时,函数有最大值,最大值为$\frac{1}{e}$,
故选:A

点评 本题考查了导数和函数的最值的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+cx(a>0,b∈R,c∈R),g(x)是f(x)的导函数.
(1)若函数g(x)的最小值是g(-1)=0,且c=1,h(x)=$\left\{\begin{array}{l}g({x-1}),x≥1\\-g({x-1}),x<1\end{array}$,求h(2)+h(-2)的值;
(2)若a=1,c=0,且|g(x)|≤1在区间(0,2]上恒成立,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=x3-3x+3-$\frac{x}{e^x}$-a,若不等式f(x)≤0有解.则实数a的最小值为(  )
A.1-$\frac{1}{e}$B.2-$\frac{2}{e}$C.1+2e2D.$\frac{2}{e}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ln(x+1)-x.
(1)求函数f(x)的单调递减区间;
(2)若x>-1,求证:ln(x+1)≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ax+$\frac{a-1}{x}$(a∈R),g(x)=lnx.
(1)当a=2时,求函数h(x)=f(x)-g(x)的最小值;
(2)当a>0,对任意x≥1,不等式f(x)-g(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,3),$\overrightarrow{c}$=(4,1),若用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{c}$,则$\overrightarrow{c}$=(  )
A.$\overrightarrow{a}$-2$\overrightarrow{b}$B.2$\overrightarrow{a}$-$\overrightarrow{b}$C.2$\overrightarrow{a}$+$\overrightarrow{b}$D.$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(1)求函数f(x)的单调区间;
(2)对任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.△ABC中,若a,b,c成等比数列,则B的取值范围为(0,$\frac{π}{3}$),$\frac{sinA+cosAtanC}{sinB+cosBtanC}$的取值范围为($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin(x+$\frac{π}{6}$)+sin(x-$\frac{π}{6}$)+cosx+a函数的最大值为1.
(1)f(x)的单调递增区间;
(2)在三角形ABC中,内角A,B,C的对边分别是a,b,c,若f(A)=1,C=$\frac{π}{4}$,c=2,求b的值.

查看答案和解析>>

同步练习册答案