精英家教网 > 高中数学 > 题目详情
19.△ABC中,若a,b,c成等比数列,则B的取值范围为(0,$\frac{π}{3}$),$\frac{sinA+cosAtanC}{sinB+cosBtanC}$的取值范围为($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$).

分析 根据等比数列的性质得到一个关系式,利用正弦定理化简得到关于a,b及c的关系式,再利用余弦定理,基本不等式,即可确定B的取值范围.
把要求的式子整理,首先切化弦,通分,逆用两角和的正弦公式,根据三角形内角和之间的关系,最后角化边,得到要求的范围既是公比的范围,用公比表示出三条边,根据两边之和大于第三边,得到不等式组,得到结果.

解答 解:∵a,b,c成等比数列,
∴b2=ac,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-ac}{2ac}$≥$\frac{2ac-ac}{2ac}$=$\frac{1}{2}$.
∵B∈(0,π)
∴B∈(0,$\frac{π}{3}$].
设三边的公比是q,三边为a,aq,aq2
原式=$\frac{sinAcosC+cosAsinC}{sinBcosC+cosBsinC}$=$\frac{sin(A+C)}{sin(B+C)}$=$\frac{sinB}{sinA}$=$\frac{b}{a}$=q
∵aq+aq2>a,①
a+aq>aq2
a+aq2>aq,③
解三个不等式可得q>$\frac{\sqrt{5}-1}{2}$,0<q<$\frac{\sqrt{5}+1}{2}$,
综上有$\frac{\sqrt{5}-1}{2}$<q<$\frac{\sqrt{5}+1}{2}$,
故答案为:(0,$\frac{π}{3}$);($\frac{\sqrt{5}-1}{2}$,$\frac{\sqrt{5}+1}{2}$).

点评 本题考查等比数列的性质,考查正弦、余弦定理的运用,考查学生的计算能力,难度较大,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx-ax.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当a<1时,证明:对?x∈(0,+∞),恒有f(x)<-$\frac{lnx}{x}$+(1-a)x+1-a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=$\frac{lnx}{x}$的最大值为(  )
A.$\frac{1}{e}$B.eC.e2D.-e

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.阅读右边的程序,若输出的y=3,则输入的x的值为(  )
A.1B.2C.±2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=kx2-lnx(k∈R).
(1)试讨论函数f(x)的单调性;
(2)若不等式f(x)≥0在区间(0,+∞)上恒成立,求k的取值范围,并证明:$\frac{ln2}{{2}^{2}}$+$\frac{ln3}{{3}^{2}}$+$\frac{ln4}{{4}^{2}}$+…+$\frac{lnn}{{n}^{2}}$<$\frac{n-1}{2e}$(n≥2,n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx.
(1)求函数f(x)的极值点;
(2)设函数g(x)=f(x)-2(x-1),求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知数列{an}满足a1=1,an+an+1=($\frac{1}{4}$)n(n∈{N*),设Sn=a1+4a2+42a3+…+4n-1an,则5S6-46a6=(  )
A.5B.6C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$ax2+2x.
(1)若曲线y=f(x)-g(x)在x=1与x=$\frac{1}{2}$处的切线相互平行,求a的值即切线斜率;
(2)若函数y=f(x)-g(x)在区间($\frac{1}{3}$,1)上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义在R上的函数f(x)满足f(x)-f(x-5)=0,当x∈(-1,4]时,f(x)=x2-2x,则函数f(x)在[0,2016]上的零点个数是1209.

查看答案和解析>>

同步练习册答案