精英家教网 > 高中数学 > 题目详情
7.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,为了得到函数y=cos(2x+$\frac{π}{6}$)的图象,只需将y=f(x)的图象(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

分析 由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用y=Asin(ωx+φ)的图象变换规律、诱导公式,求得结论.

解答 解:根据函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象,
可得$\frac{1}{2}•\frac{2π}{ω}$=$\frac{5π}{6}$-$\frac{π}{3}$,∴ω=2.
再根据五点法作图可得2•$\frac{π}{3}$+φ=π,求得φ=$\frac{π}{3}$,可得f(x)=sin(2x+$\frac{π}{3}$).
函数y=cos(2x+$\frac{π}{6}$)=sin ($\frac{π}{3}$-2x)=-sin(2x-$\frac{π}{3}$)=sin(2x+$\frac{2π}{3}$),
故把f(x)=sin(2x+$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位,
可得函数y=sin[2(x+$\frac{π}{6}$)+$\frac{π}{3}$]=sin(2x+$\frac{2π}{3}$)=cos(2x+$\frac{π}{6}$)的图象,
故选:C.

点评 本题主要考查利用y=Asin(ωx+φ)的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设△ABC的面积为S,角A,B,C的对边分别为a,b,c,$4S=\sqrt{3}({b^2}+{c^2}-{a^2})$.
(1)求∠A;
(2)求$sin(A+{10°})[{1-\sqrt{3}tan(A-{{10}°})}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn,且满足:$2{S_n}={a_n}^2+n,({a_n}>0,n∈{N^*})$.
(1)求a1,a2,a3
(2)猜想数列{an}的通项公式,并用数学归纳法证明;
(3)若bn=$\frac{{a}_{n}}{{2}^{n}}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=${x^{\frac{2}{3}}}$的导函数为(  )
A.$y=\frac{2}{3}{x^{\frac{1}{3}}}$B.$y={x^{-\frac{1}{3}}}$C.$y=-\frac{2}{3}{x^{-\frac{1}{3}}}$D.$y=\frac{2}{{3\root{3}{x}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.F是抛物线y2=2x的焦点,A、B是抛物线上的两点,|AF|+|BF|=8,则线段AB的中点到y轴的距离为(  )
A.4B.$\frac{9}{2}$C.$\frac{7}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.f(x)是定义在R上的可导函数,则f′(x0)=0是x0为f(x) 的极值点的必要不充分条件.(填充分不必要,必要不充分,充要条件或既不充分也不必要)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=ex-$\frac{m}{x}$在区间[1,2]上的最小值为1,则实数m的值为e-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,sinA:sinB:sinC=$\sqrt{21}$:4:5,则角A=(  )
A.30°B.150°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则下面结论正确的是(  )
A.函数f(x)的最小正周期为$\frac{π}{2}$B.φ=$\frac{π}{9}$
C.函数f(x)的图象关于直线x=$\frac{5π}{6}$对称D.函数f(x)在区间[0,$\frac{π}{4}$]上是增函数

查看答案和解析>>

同步练习册答案