精英家教网 > 高中数学 > 题目详情

已知定义在R上的函数f(x)满足f(x)>0且对任意的x1,x2∈R,都有f(x1+x2)=f(x1)•f(x2)-2,且f(1)=2,则f(2)=______,若令f(x1)=a,f(x2)=b且f(x1+x2)=a+b,则a数学公式的取值范围是______.

解:∵对任意的x1、x2∈R,都有f(x1+x2)=f(x1)•f(x2)-2,
∴令x1=x2=1,可得f(1+1)=f(1)+f(1)-2
结合f(1)=2,得f(2)=2f(1)-2=2×2-2=2;
∵f(x1)=a,f(x2)=b且f(x1+x2)=a+b,
∴结合f(x1+x2)=f(x1)•f(x2)-2,得ab-2=a+b
∵f(x1)=a,f(x2)=b均为正数
∴ab-2=a+b≥2,当且仅当a=b时等号成立
即(2-2-2≥0,解之得≤1-≥1+
结合为正数,可得≥1+,所以ab≥(1+2=4+2
即a的取值范围是[4+2,+∞)
故答案为:2,[4+2,+∞)
分析:对已知等式令x1=x2=1,可得f(1+1)=f(1)+f(1)-2,即f(2)=2f(1)-2=2×2-2=2;若f(x1)=a,f(x2)=b且f(x1+x2)=a+b,利用已知等式化简可得ab-2=a+b,结合基本不等式变形得到ab-2≥2,解关于的不等式得到≥1+(舍负),从而得到ab的取值范围.
点评:本题给出特殊的抽象函数,求特殊的函数值并讨论ab的取值范围.着重考查了抽象函数的处理和基本不等式求最值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案