精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)={log_a}\frac{x-1}{x+1}\;({a>1})$.
(1)求此函数的定义域D,并判断其奇偶性;
(2)是否存在实数a,使f(x)在x∈(1,a)时的值域为(-∞,-1)?若存在,求出a的值;若不存在,说明理由.

分析 (1)利用真数大于0,求此函数的定义域D,利用f(-x)=-f(x),判断其奇偶性;
(2)由题意f(a)=-1,即$\frac{a-1}{a+1}$=$\frac{1}{a}$,从而得出结论.

解答 解:(1)由$\frac{x-1}{x+1}$>0,可得x<-1或x>1,∴D={x|x<-1或x>1};
f(-x)=-f(x),∴函数f(x)是奇函数;
(2)由题意,函数单调递增,f(a)=-1,即$\frac{a-1}{a+1}$=$\frac{1}{a}$,∵a>1,∴$a=1+\sqrt{2}$.

点评 本题考查函数的定义域与值域,考查函数的奇偶性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若点(1,2)和点(-1,3)在直线x+ay-1=0的两侧,则实数a的取值范围是$(0,\frac{2}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a∥b,b∩c=A,则a,c的位置关系是(  )
A.异面直线B.相交直线
C.平行直线D.相交直线或异面直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|x-1|≤2},集合$B=\left\{{x\left|{\frac{x-a}{x+3}<0}\right.}\right\}$
(1)若a=1,求集合A∩B;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若cot(${\frac{3π}{2}$-θ)=$\frac{1}{2}$,则$\frac{{sin({3π-θ})+sin({\frac{3}{2}π+θ})}}{{cos({\frac{π}{2}+θ})+cos({π-θ})}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于定义在区间D上的函数y=f(x),若存在x0∈D,对任意的x∈D,都有f(x)≥f(x0),则称函数f(x)在区间D上有“下界”,把f(x0)称为函数f(x)在D上的“下界”.
(1)分别判断下列函数是否有“下界”?如果有,写出“下界”,否则请说明理由;f1(x)=1-2x(x>0),f2(x)=x+$\frac{16}{x}$(0<x≤5).
(2)请你类比函数有“下界”的定义,写出函数f(x)在区间D上有“上界”的定义;并判断函数f2(x)=|x-$\frac{16}{x}$|(0<x≤5)是否有“上界”?说明理由;
(3)若函数f(x)在区间D上既有“上界”又有“下界”,则称函数f(x)是区间D上的“有界函数”,把“上界”减去“下界”的差称为函数f(x)在D上的“幅度M”.
对于实数a,试探究函数F(x)=x|x-2a|+3(a≤$\frac{1}{2}$)是否是[1,2]上的“有界函数”?如果是,求出“幅度M”的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对函数$f(x)=\frac{ax+1}{x-1}$(其中a为实数,x≠1),给出下列命题;
①当a=1时,f(x)在定义域上为单调递减函数;
②对任意a∈R,f(x)都不是奇函数;
③当a=1时,f(x)为偶函数;
④关于x的方程f(x)=0最多有一个实数根,
其中正确命题的序号为②④,(把所有正确的命题序号写入横线)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.实数m分别取什么数值时?复数z=(m2+5m+6)+(m2-2m-15)i满足:
(1)纯虚数;
(2)与复数12+16i互为共轭.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(x)的定义域为R,f'(x)>1恒成立,f(-1)=1,则f(x)>x+2解集为(  )
A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(0,+∞)

查看答案和解析>>

同步练习册答案