分析 (1)利用真数大于0,求此函数的定义域D,利用f(-x)=-f(x),判断其奇偶性;
(2)由题意f(a)=-1,即$\frac{a-1}{a+1}$=$\frac{1}{a}$,从而得出结论.
解答 解:(1)由$\frac{x-1}{x+1}$>0,可得x<-1或x>1,∴D={x|x<-1或x>1};
f(-x)=-f(x),∴函数f(x)是奇函数;
(2)由题意,函数单调递增,f(a)=-1,即$\frac{a-1}{a+1}$=$\frac{1}{a}$,∵a>1,∴$a=1+\sqrt{2}$.
点评 本题考查函数的定义域与值域,考查函数的奇偶性,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | (-1,+∞) | C. | (-∞,-1) | D. | (0,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com