精英家教网 > 高中数学 > 题目详情
9.已知集合A={x|x-1|≤2},集合$B=\left\{{x\left|{\frac{x-a}{x+3}<0}\right.}\right\}$
(1)若a=1,求集合A∩B;
(2)若A∪B=B,求实数a的取值范围.

分析 (1)若a=1,化简集合A,B,即可求集合A∩B;
(2)若A∪B=B,则A⊆B,即可求实数a的取值范围.

解答 解:(1)若a=1,集合A={x|x-1|≤2}={x|-1≤x≤3},
集合$B=\left\{{x\left|{\frac{x-a}{x+3}<0}\right.}\right\}$={x|-3<x<1},
∴A∩B={x|-1≤x<1};
(2)若A∪B=B,则A⊆B,∴a>3.

点评 本题考查集合的运算,考查集合的关系,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.一机器可以按不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少,随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件的个数,现观测得到(x,y)的四组观测值为(8,5),(12,8),(14,9),(16,11).已知y与x有很强的线性相关性,若实际生产中所允许的每小时有缺点的物件数不超过10,则机器的速度每秒不得超过多少转?(精确到整数)
参考公式:
若(x1,y1),…,(xn,yn)为样本点,$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$
$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.写出函数f(x)=$\sqrt{5+x}+\sqrt{5-x}$-4的定义域,判断并证明其奇偶性和单调性,并求出其所有零点和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知关于x的不等式ax2-bx+3>0的解集为(-3,1)
(Ⅰ)求实数a,b的值;
(Ⅱ)解关于x的不等式:${log_b}({2x-1})≤\frac{1}{2^a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=x2-mx+1的两个零点分别在区间(0,1)和(1,2),则实数m的取值范围(2,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若loga3b=-1,则a+b的最小值为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)={log_a}\frac{x-1}{x+1}\;({a>1})$.
(1)求此函数的定义域D,并判断其奇偶性;
(2)是否存在实数a,使f(x)在x∈(1,a)时的值域为(-∞,-1)?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.p:$\left\{\begin{array}{l}a>2\;,\;\;\\ b=3\;.\end{array}\right.$是q:$\left\{\begin{array}{l}a+b>5\;,\;\;\\ ab>6.\end{array}\right.$成立的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法中正确的是(  )
A.命题“?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0”
B.命题“p∧q为真”是命题“p∨q为真”的必要不充分条件
C.设x,y∈R,“若x+y≠4,则x≠1或y≠3”是假命题
D.设a,b,m∈R,“若am2≤bm2,则a≤b”的否命题为真

查看答案和解析>>

同步练习册答案