精英家教网 > 高中数学 > 题目详情
14.若loga3b=-1,则a+b的最小值为$\frac{2\sqrt{3}}{3}$.

分析 把对数式化为指数式,再利用基本不等式的性质即可得出.

解答 解:∵loga3b=-1,∴a-1=3b,解得ab=$\frac{1}{3}$.a,b>0.
则a+b≥2$\sqrt{ab}$=$\frac{2\sqrt{3}}{3}$,当且仅当a=b=$\frac{\sqrt{3}}{3}$时取等号,其最小值为$\frac{2\sqrt{3}}{3}$.
故答案为:$\frac{2\sqrt{3}}{3}$.

点评 本题考查了对数式化为指数式、基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,设OA=1,则阴影部分的面积是$\frac{π-2}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列比较大小错误的是(  )
A.sin($-\frac{π}{18}$)>sin($-\frac{π}{10}$)B.sin250°>sin260°C.tan$\frac{π}{4}$>tan$\frac{π}{6}$D.tan138°>tan143°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知关于x的方程${log_2}({x+3})-{log_4}{x^2}=a$的解在区间(3,8)内,则a的取值范围是$(lo{g}_{2}\frac{11}{8},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|x-1|≤2},集合$B=\left\{{x\left|{\frac{x-a}{x+3}<0}\right.}\right\}$
(1)若a=1,求集合A∩B;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$0<β<\frac{π}{2}<α<π$,且$cos({α-\frac{β}{2}})=\frac{5}{13}$,$sin({\frac{α}{2}-β})=\frac{3}{5}$.
求(1)$tan({α-\frac{β}{2}})$的值;
(2)$cos({\frac{α+β}{2}})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于定义在区间D上的函数y=f(x),若存在x0∈D,对任意的x∈D,都有f(x)≥f(x0),则称函数f(x)在区间D上有“下界”,把f(x0)称为函数f(x)在D上的“下界”.
(1)分别判断下列函数是否有“下界”?如果有,写出“下界”,否则请说明理由;f1(x)=1-2x(x>0),f2(x)=x+$\frac{16}{x}$(0<x≤5).
(2)请你类比函数有“下界”的定义,写出函数f(x)在区间D上有“上界”的定义;并判断函数f2(x)=|x-$\frac{16}{x}$|(0<x≤5)是否有“上界”?说明理由;
(3)若函数f(x)在区间D上既有“上界”又有“下界”,则称函数f(x)是区间D上的“有界函数”,把“上界”减去“下界”的差称为函数f(x)在D上的“幅度M”.
对于实数a,试探究函数F(x)=x|x-2a|+3(a≤$\frac{1}{2}$)是否是[1,2]上的“有界函数”?如果是,求出“幅度M”的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知x∈R且x≠1,比较两式1+x与$\frac{1}{1-x}$的值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点M的极坐标(1,π)化成直角坐标为(  )
A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)

查看答案和解析>>

同步练习册答案