精英家教网 > 高中数学 > 题目详情

对实数a和b,定义运算“”:.设函数,x∈R.若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是.

[  ]

A.(-1,1]∪(2,+∞)

B.(-2,-1]∪(1,2]

C.(-∞,-2)(1,2]

D.[―2,―1]

答案:B
解析:

  由题设

  画出函数的图象,函数图象的四个端点(如图)为,,.从图象中可以看出,直线穿过点,点之间时,直线与图象有且只有两个公共点,同时,直线穿过点,点时,直线与图象有且只有两个公共点,所以实数的取值范围是.故选B


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对实数a和b,定义运算“?”:a?b=
a,a≤b
b,a>b
.设函数f(x)=(x2-1)?(x-x2),x∈R.若函数y=f(x)-c恰有四个不同的零点,则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对实数a和b,定义运算“?”:a?b=
a,a-b≤1
b,a-b>1
,设函数f(x)=(x2-2)?(x-x2),x∈R,若函数y=f(x)+c的图象与x轴恰有两个公共点,则实数c的取值范围是
(
3
4
,1)∪[2,+∞)
(
3
4
,1)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

对实数a和b,定义运算“?”:a?b=
a,a≤b
b,a>b
设函数f(x)=(x2-1)?(x-x2),x∈R.若函数y=f(x)-c恰有两个不同的零点,则实数c的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对实数a和b,定义运算“⊕”:a⊕b=
a,a≥b
b,a<b
,设函数f(x)=(x2-1)⊕(x-x2),x∈R,则y=f(x)与x轴的公共点个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)对实数a和b,定义运算“?”;a?b=
a,a-b≤1
b,a-b>1
设函数f(x)=(x2-2x)?(x-3)(x∈R),若函数y=f(x)-k的图象与x轴恰有两个公共点,则实数k的取值范围是
-1<k≤0
-1<k≤0

查看答案和解析>>

同步练习册答案