【题目】已知是椭圆的左右焦点,为原点, 在椭圆上,线段与轴的交点满足.
(1)求椭圆的标准方程;
(2)过椭圆右焦点作直线交椭圆于两点,交轴于点,若,求.
科目:高中数学 来源: 题型:
【题目】已知函数.
(I)求函数的对称轴方程;
(II)将函数的图象上各点的纵坐标保持不变,横坐标伸长为原来的2倍,然后再向左平移个单位,得到函数的图象.若分别是△ABC三个内角A,B,C的对边,a=2,c=4,且,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法;在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法错误的是( )
A. 甲应付钱 B. 乙应付钱
C. 丙应付钱 D. 三者中甲付的钱最多,丙付的钱最少
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log22x﹣mlog2x+2,其中m∈R.
(1)当m=3时,求方程f(x)=0的解;
(2)当x∈[1,2]时,求f(x)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线与圆相交于不同的两点.
(1)求线段的中点的轨迹的方程;
(2)是否存在实数,使得直线与曲线只有一个交点?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 上的任一点到焦点的距离最大值为3,离心率为 ,
(1)求椭圆的标准方程;
(2)若为曲线上两点, 为坐标原点,直线 的斜率分别为,且,求直线被圆截得弦长的最大值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所发现,一种作物的年收获量 (单位: )与它“相近”作物的株数 具有线性相关关系(所谓两株作物“相近”是指它们的直线距离不超过 ),并分别记录了相近作物的株数为 时,该作物的年收获量的相关数据如下:
(1)求该作物的年收获量 关于它“相近”作物的株数的线性回归方程;
(2)农科所在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每
个小正方形的面积为 ,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收
获量以线性回归方程计算所得数据为依据)
附:对于一组数据,其回归直线的斜率和截距的最小二乘估
计分别为, ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的一段图象如下所示.
(1)求f(x)的解析式;
(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com