精英家教网 > 高中数学 > 题目详情
19.将等差数列3,8,13,18,…按顺序抄在练习本上,已知每行抄13个数,每页抄21行,求数33333所在的页和行.

分析 根据题意,先求出等差数列的公差与通项公式an,由此求出33333是数列中的哪一项,再根据每一页、每一行的数据个数,即可求出答案来.

解答 解:∵等差数列3,8,13,18,…,的公差为d=8-3=5,
∴通项公式为an=3+5(n-1),
令3+5(n-1)=33333,
解得n=6667;
又13×21=273,
6667÷273=24,余数是115,
115÷13=8,余数是11;
∴实数33333所在的页为第25页,所在的行为第9行.

点评 本题考查了等差数列的性质与应用问题,也考查了计算与逻辑推理能力,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知数列{an},若直线y=2$\sqrt{2}$x+3n(n∈N*)与圆x2+y2=an2(an>0)相切,则a2015=(  )
A.32016B.32015C.32014D.32013

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A={x|x2-x-2=0},B={x|ax2-4x-4=0},若B?A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a,b,c∈R,且3a=4b=6c,求证:$\frac{2}{c}$=$\frac{2}{a}$+$\frac{1}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|(a-1)x2+3x-2=0},是否存在这样的实数a,使得集合A有且只有两个子集?若存在,求出实数a的值与其对应的两个子集?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)设集合U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(∁A)∩B=∅,求实数m的值.
(2)设集合A={x|x+1≤0或x-4≥0},B={x|2a≤x≤a+2},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|x=m2-n2,m,n∈Z},求证:
(1)任何奇数都是A的元素;
(2)偶数4k-2(k∈Z)不属于A.
(3)若α∈A,β∈A,则αβ∈A.
(4)将A中的正整数从小到大排成一列,则2012为此数列中的第几项?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.化简下列各式:
(1)$\frac{cos(π-α)tan(2π-α)tan(π-α)}{sin(π+α)}$;
(2)$\frac{sin(2π+α)tan(π+α)tan(π-α)}{cos(π+α)tan(3π-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足a1=p-1,点(an+1,an)在直线x-y+1=0上,数列{bn}对应的点(n,bn)在函数f(x)=2x-5的图象上.
(1)求数列{an}和{bn}的通项公式;
(2)设cn=$\left\{\begin{array}{l}{{a}_{n},{a}_{n}≤{b}_{n}}\\{{b}_{n},{a}_{n}>{b}_{n}}\end{array}\right.$,若c8为数列{cn}中唯一的最大项,求实数p的取值范围.

查看答案和解析>>

同步练习册答案