精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>b>0)
,M,N是双曲线上关于原点对称的两点,P是双曲线上的动点,且直线PM,PN的斜率分别为k1,k2,k1k2≠0,若|k1|+|k2|的最小值为1,则双曲线的离心率为(  )
分析:先假设点的坐标,代入双曲线方程,利用点差法,可得斜率之间为定值,再利用|k1|+|k2|的最小值为1,即可求得双曲线的离心率.
解答:解:由题意,可设点M(p,q),N(-p,-q),P(s,t).
p2
a2
-
q2
b2
=1
,且
s2
a2
-
t2
b2
=1

两式相减得
t2-q2
s2-p2
=
b2
a2

再由斜率公式得:k1k2=
t2-q2
s2-p2
=
b2
a2

∵|k1|+|k2|
2b
a

根据|k1|+|k2|的最小值为1,可知
2b
a
=1

e=
c
a
=
5
2

故选B.
点评:本题以双曲线为载体,考查双曲线的性质,关键是利用点差法,求得斜率之积为定值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案