精英家教网 > 高中数学 > 题目详情
已知两圆C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是(  )
A.x=0B.
x2
2
-
y2
14
=1(x≥
2
)
C.
x2
2
-
y2
14
=1
D.
x2
2
-
y2
14
=1或x=0
由题意,①若两定圆与动圆相外切或都内切,即两圆C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,动圆M与两圆C1,C2都相切,
∴|MC1|=|MC2|,即M点在线段C1,C2的垂直平分线上
又C1,C2的坐标分别为(-4,0)与(4,0)
∴其垂直平分线为y轴,
∴动圆圆心M的轨迹方程是x=0
②若一内切一外切,不妨令与圆C1:(x+4)2+y2=2内切,与圆C2:(x-4)2+y2=2外切,则有M到的距离减到的距离的差是2
2
,由双曲线的定义知,点M的轨迹是以(-4,0)与(4,0)为焦点,以
2
为实半轴长的双曲线,故可得b2=c2-a2=14,故此双曲线的方程为
x2
2
-
y2
14
=1

综①②知,动圆M的轨迹方程为
x2
2
-
y2
14
=1或x=0

应选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两圆C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是(  )
A、x=0
B、
x2
2
-
y2
14
=1(x≥
2
)
C、
x2
2
-
y2
14
=1
D、
x2
2
-
y2
14
=1或x=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海一模)在平面直角坐标系中,已知两圆C1:(x-1)2+y2=25和C2:(x+1)2+y2=1,动圆在C1内部且和圆C1相内切并和圆C2相外切,动圆圆心的轨迹为E.
(1)求E的标准方程;
(2)点P为E上一动点,点O为坐标原点,曲线E的右焦点为F,求|PO|2+|PF|2的最小值.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

如图,已知两圆C1 :(x-4 )2+y2=169 ,C2 :(x+4 )2+y2 =9 ,动圆在圆C1 内部且和圆C1 相内切,和圆C2 相外切,求动圆圆心的轨迹方程

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两圆C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,动圆M与两圆C1、C2都相切,则动圆圆心M的轨迹方程是(    )

A.x=0                                       B.=1(x≥)

C.=1                                D.=1或x=0

查看答案和解析>>

同步练习册答案