精英家教网 > 高中数学 > 题目详情
已知圆方程为y2-6ysinθ+x2-8xcosθ+7cos2θ+8=0.
①求圆心轨迹的参数方程C;
②点P(x,y)是①中曲线C上的动点,求2x+y的取值范围.
考点:圆的参数方程
专题:计算题,坐标系和参数方程
分析:先将圆的一般式方程转化成圆的标准方程,从而求出圆心的参数方程,利用参数方程将2x+y表示成8cosθ+3sinθ,然后利用辅助角公式求出8cosθ+3sinθ的取值范围即可.
解答: 解:①将圆的方程整理得:(x-4cosθ)2+(y-3sinθ)2=1
则圆的圆心C的参数方程为:
x=4cosθ
y=3sinθ
(θ为参数,θ∈R);
②由于点P(x,y)是①中曲线C上的动点,
则2x+y=8cosθ+3sinθ=
73
8
73
cosθ+
3
73
sinθ

=
73
cos(θ-φ)(φ为辅助角),
则最大值为
73
,最小值为-
73

则2x+y的取值范围是[-
73
73
].
点评:本题主要考查了圆的方程,以及三角函数模型的应用问题和辅助角公式的应用,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设抛物线C:y2=4x的焦点为F,直线l过点M(2,0)且与C交于A、B两点,|BF|=
3
2
,若|AM|=λ|BM|,则λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx-
1
2
x(x∈[0,π]),那么下列结论正确的是(  )
A、f(x)在[0,
π
2
]上是增函数
B、f(x)在[
π
6
,π]上是减函数
C、?x∈[0,π],f(x)>f(
π
3
)
D、?x∈[0,π],f(x)≤f(
π
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x>0时f(x)<0恒成立.
(1)证明函数f(x)的奇偶性;
(2)若f(1)=-2,求函数f(x)在[-2,2]上的最大值;
(3)解关于x的不等式
1
2
f(-2x2)-f(x)>
1
2
f(4x)-f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的方程9x-(4+a)•3x+4=0有解,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为BC1的中点,则DE与面BCC1B1所成角的正切值为(  )
A、
6
2
B、
6
2
C、
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知E为正方体ABCD-A1B1C1D1的棱DD1中点,则BD1与平面ACE位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:对于任意x∈R,有f(x)=f(2-x).若tanα=
1
2
,则f(-10sinαcosα)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是正方体的平面展开图,则在这个正方体中:
①BM与ED异面;         ②CN∥BE;
③CN与BF成60°角;     ④DM⊥BN.
以上四个命题中,正确的命题序号是(  )
A、①②③B、①②④
C、①③④D、①②③④

查看答案和解析>>

同步练习册答案