精英家教网 > 高中数学 > 题目详情
13.如图,在锐角△ABC中,$\overrightarrow{AN}$=$\frac{1}{2}$$\overrightarrow{NC}$,P是线段BN(不含端点)上的一点,若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则$\frac{1}{m}$+$\frac{3}{n}$的最小值为16.

分析 设$\overrightarrow{BP}$=t$\overrightarrow{BN}$,0<t<1,用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示出$\overrightarrow{AP}$,求出m、n的表达式,再代入$\frac{1}{m}$+$\frac{3}{n}$求出它的最小值.

解答 解:设$\overrightarrow{BP}$=t$\overrightarrow{BN}$,0<t<1,
又$\overrightarrow{BN}$=$\overrightarrow{AN}$-$\overrightarrow{AB}$,$\overrightarrow{AN}$=$\frac{1}{2}$$\overrightarrow{NC}$,
∴$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{BP}$
=$\overrightarrow{AB}$+t$\overrightarrow{BN}$
=$\overrightarrow{AB}$+t($\overrightarrow{AN}$-$\overrightarrow{AB}$)
=(1-t)$\overrightarrow{AB}$+t$\overrightarrow{AN}$
=(1-t)$\overrightarrow{AB}$+$\frac{t}{3}$$\overrightarrow{AC}$,
∵$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,
∴m=1-t,n=$\frac{t}{3}$;
∴$\frac{1}{m}$+$\frac{3}{n}$=$\frac{1}{1-t}$+$\frac{9}{t}$
=($\frac{1}{1-t}$+$\frac{9}{t}$)(1-t+t)
=1+$\frac{t}{1-t}$+$\frac{9(1-t)}{t}$+9
≥2$\sqrt{\frac{t}{1-t}•\frac{9(1-t)}{t}}$+10
=2×3+10
=16,当且仅当t=$\frac{3}{4}$时“=”成立;
∴$\frac{1}{m}$+$\frac{3}{n}$的最小值是16.
故答案为:16.

点评 本题考查了平面向量的共线定理以及基本不等式的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.经过点P(0,-1)作直线l,若直线l与连接A(1,-2),B(2,1)的线段总有公共点,则斜率k的取值范围为(  )
A.[-1,1]B.(-1,1)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过双曲线Γ的右焦点,且倾斜角为$\frac{π}{2}$的直线l与双曲线Γ交地A,B两点,O是坐标原点,若∠AOB=∠OAB,则双曲线Γ的离心率为(  )
A.$\frac{\sqrt{3}+\sqrt{7}}{2}$B.$\frac{\sqrt{11}+\sqrt{33}}{2}$C.$\frac{\sqrt{3}+\sqrt{39}}{6}$D.$\frac{1+\sqrt{17}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知方程ax2+x+b=0.
(1)若方程的解集为{1},求实数a,b的值;
(2)若方程的解集为{1,3},求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2+f′(2)(lnx-x),则f′(4)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设A={a|f(x)=2x2-3ax+13是(3,+∞)上的增函数},B={y|y=$\frac{5}{x+2}$,x∈[-1,3]},则∁R(A∩B)=(-∞,1)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.解方程2•4x-3•2x-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{lnx}{a^2}-x$.
(I)若曲线f(x)在(1,f(1))处的切线与x轴平行,求函数f(x)的单调区间;
(II)当f(x)的最大值大于1-$\frac{2}{a^2}$时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设等比数列{an}的各项均为正数,公比为q,前n项和为Sn,若对?x∈N+,有$\frac{{S}_{2n}}{{S}_{n}}$<5,则q的取值范围是(  )
A.(0,1]B.(1,2)C.[1,$\sqrt{2}$)D.($\sqrt{2}$,2)

查看答案和解析>>

同步练习册答案