精英家教网 > 高中数学 > 题目详情
18.设A={a|f(x)=2x2-3ax+13是(3,+∞)上的增函数},B={y|y=$\frac{5}{x+2}$,x∈[-1,3]},则∁R(A∩B)=(-∞,1)∪(4,+∞).

分析 化简集合A、B,再根据交集与补集的定义进行计算即可.

解答 解:A={a|f(x)=2x2-3ax+13是(3,+∞)上的增函数}
={a|x=$\frac{3a}{4}$≤3}
={a|a≤4}
=(-∞,4],
B={y|y=$\frac{5}{x+2}$,x∈[-1,3]}
={y|1≤y≤5}
=[1,5];
∴A∩B=[1,4],
R(A∩B)=(-∞,1)∪(4,+∞).
故答案为:(-∞,1)∪(4,+∞).

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数y=2${\;}^{-{x^2}+2x+3}}$的值域为(0,16].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线y=kx+1,椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1,试判断直线与椭圆的位置关系(  )
A.相切B.相离C.相交D.相切或相交

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=$\frac{\sqrt{12-{x}^{4}}+{x}^{2}}{{x}^{3}}$+4,(x∈[-1,0)∪(0,1])的最大值为A,最小值为B,则A+B=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在锐角△ABC中,$\overrightarrow{AN}$=$\frac{1}{2}$$\overrightarrow{NC}$,P是线段BN(不含端点)上的一点,若$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则$\frac{1}{m}$+$\frac{3}{n}$的最小值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,正方形ABCD的边长为2,动点P从ABCD顶点A开始,顺次经B,C,D绕边界一周,当x表示点P的行程,f(x)表示线段PA之长时,求f(x)的解析式,并求f(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$,满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\overrightarrow{a}•\overrightarrow{b}$=3,若($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\frac{2}{3}$$\overrightarrow{b}$)=0,则|$\overrightarrow{b}-\overrightarrow{c}$|的最小值是(  )
A.2-$\sqrt{3}$B.2+$\sqrt{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,D是边BC上一点,且$\overrightarrow{BD}=3\overrightarrow{DC},P$是线段AD上一个动点,若$\overrightarrow{|{AD}|}=2$,则$\overrightarrow{PA}•({\overrightarrow{PB}+3\overrightarrow{PC}})$的最小值是(  )
A.-8B.-4C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题正确的是(  )
A.单位向量都相等
B.长度相等且方向相反的两个向量不一定是共线向量
C.若$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|$>$|{\overrightarrow b}|$且$\overrightarrow a$与$\overrightarrow b$同向,则$\overrightarrow a$>$\overrightarrow b$
D.对于任意向量$\overrightarrow a$,$\overrightarrow b$,必有$|{\overrightarrow a+\overrightarrow b}|$≤$|{\overrightarrow a}|$+$|{\overrightarrow b}|$

查看答案和解析>>

同步练习册答案