精英家教网 > 高中数学 > 题目详情

(14分)已知函数定义在区间上,且。又是其图像上任意两点

求证:的图像关于点成中心对称图形;

设直线的斜率为,求证:

,求证:

(1)。(1分)

的图像可由的图像向上(或下)平移(或)个单位二得到。                                                                 (3分)

是奇函数,其图像关于原点成中心对称图形,的图像关于点成中心对称图形。                                        …………………………5分

(2)的图像上,

。…………………………7分

,从而

                           …………………………11分

(3),且,          1

                                2

1+2得,故                …………………………14分

练习册系列答案
相关习题

科目:高中数学 来源:2014届吉林省高二上学期期中考试数学试卷(解析版) 题型:解答题

已知函数定义在区间上,,且当时,

恒有.又数列满足.

(1)证明:上是奇函数;

(2)求的表达式;

(3)设为数列的前项和,若恒成立,求的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2014届四川省高二入学考试数学试卷(解析版) 题型:解答题

已知函数定义在区间上,,且当时,恒有.又数列满足

(Ⅰ)证明:上是奇函数;

(Ⅱ)求的表达式;

(III)设为数列的前项和,若恒成立,求的最小值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分8分,第3小题满分7分.

已知函数定义在区间上,,对任意

恒有成立,又数列满足

(1)在内求一个实数,使得

(2)证明数列是等比数列,并求的表达式和的值;

(3)设,是否存在,使得对任意 恒成立?若存在,求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分8分,第3小题满分7分.

已知函数定义在区间上,,对任意

恒有成立,又数列满足

(1)在内求一个实数,使得

(2)证明数列是等比数列,并求的表达式和的值;

(3)是否存在,使得对任意,都有成立?若存在,求出的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案