精英家教网 > 高中数学 > 题目详情

(1)求证:函数y=f(x)与y=g(x)的图像有两个交点;

(2)设f(x)与g(x)的图像交点A、B在x轴上的射影为

(1)         

(2)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在区间(1,+∞)上的函数,其导函数为f′(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a),设函数f(x)=lnx+
b+2x+1
(x>1)
,其中b为实数.
(1)①求证:函数f(x)具有性质P(b);
②求函数f(x)的单调区间.
(2)已知函数g(x)具有性质P(2),给定x1,x2∈(1,+∞),x1<x2,设m为实数,α=mx1+(1-m)x2,β=(1-m)x1+mx2,α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一次函数f(x)=ax+b与二次函数g(x)=ax2+bx+c满足a>b>c,且a+b+c=0(a,b,c∈R).
(1)求证:函数y=f(x)与y=g(x)的图象有两个不同的交点A,B;
(2)设A1,B1是A,B两点在x轴上的射影,求线段A1B1长的取值范围;
(3)求证:当x≤-
3
时,f(x)<g(x)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b.
(1)求证:函数y=f(x)与y=g(x)的图象有两个交点;
(2)设f(x)与g(x)的图象交点A、B在x轴上的射影为A1、B1,求|A1B1|的取值范围;
(3)求证:当x≤-
3
时,恒有f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源:2010年江西省高三上学期开学模拟考试文科数学卷 题型:解答题

(1)求证:函数y=f(x)与y=g(x)的图像有两个交点;

(2)设f(x)与g(x)的图像交点A、B在x轴上的射影为

 

查看答案和解析>>

同步练习册答案