精英家教网 > 高中数学 > 题目详情
如图,三棱锥中,底面,点分别是的中点.

(1)求证:⊥平面;(2)求二面角的余弦值。
(Ⅰ) 略  (Ⅱ)   
:方法(一)
(Ⅰ)由已知可得为等腰直角三角形,则
平面平面,则

平面,由平面,得
由中位线定理得,,于是
,所以平面.         
(Ⅱ)已证明平面,又平面,则
已证明,又,则平面
因为平面平面,所以
由二面角的定义,得为二面角的平面角.
,可求得
中,可求得,在中,可求得
中,由余弦定理得,.则为所求.


 
方法(二)

如图建立空间直角坐标系,设
可求出以下各点的坐标:
A(2,2,0),B(0,0,0),C(2,0,0),
P(0,0,2),E(1,0,1),F(1,1,1)
(Ⅰ)

于是,又
平面.       
(Ⅱ),有
于是,由二面角定义,向量的夹角为所求.
,所以为所求.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,平面PAD⊥平面ABCD,ABCD为正力形,∠PAD=900,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点。

(1)求证:PB∥平面EFG;
(2)求异面直线EG与BD所成的角;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m是平面的一条斜线,点A是平面外的任意点,是经过点A的一条动直线,那么下列情形中可能出现的是                                                       (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正三棱柱ABCA1B1C1的底面边长为a,侧棱长为a.

(1)建立适当的坐标系,并写出ABA1C1的坐标;
(2)求AC1与侧面ABB1A1所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等腰DABC中,AC = BC = 2,ACB = 120°,DABC所在平面外的一点P到三角形三顶点的距离都等于4,求直线PC与平面ABC所成的角。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,菱形ABCD所在平面与矩形ACEF所在平面相互垂直,点M是线段EF的中点。(1)求证:AM // 平面BDE(6分) (2)当为何值时,平面DEF平面BEF?并证明你的结论。(8分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分共12分)如图,在中,边上高,,沿翻折,使得,得到几何体。(1)求证:

(2)求与平面成角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥S-ABC的底面是正三角形,点A在侧面SBC上的射影H是△SBC的垂心,SA=a,则此三棱锥体积最大值是
A.B.C.D.

查看答案和解析>>

同步练习册答案