精英家教网 > 高中数学 > 题目详情
14.已知双曲线C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的离心率为$\frac{5}{3}$,则双曲线C的渐近线方程为(  )
A.$y=±\frac{3}{4}x$B.$y=±\frac{4}{3}x$C.$y=±\frac{{\sqrt{6}}}{3}x$D.$y=±\frac{{\sqrt{6}}}{2}x$

分析 利用双曲线的离心率,而渐近线中a,b关系,结合c2=a2+b2找关系即可.

解答 解:e=$\frac{c}{a}$=$\frac{5}{3}$,又因为在双曲线中,c2=a2+b2
所以e2=$\frac{{c}^{2}}{{a}^{2}}$=1+$\frac{{b}^{2}}{{a}^{2}}$=$\frac{25}{9}$,
故$\frac{b}{a}$=$\frac{4}{3}$,
所以双曲线C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1的渐近线方程为y=$±\frac{a}{b}$x=$±\frac{3}{4}$x
故选:A.

点评 本题考查双曲线的性质:离心率和渐近线,属基础知识的考查.在双曲线中,要注意条件c2=a2+b2的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{x}$+x.
(1)判断并证明f(x)的奇偶性;
(2)证明:函数f(x)在区间(1,+∞)上为增函数;
(3)求函数f(x)在区间[1,3]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知角α的顶点为坐标原点,始边在x轴正半轴上,终边过点(m,-2).若cosα=$\frac{\sqrt{5}}{5}$,求
(1)tanα的值
(2)sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设ai,j(i、j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a4,2=8.若ai,j=2015,则i、j的值分别为63,62.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在数列{an}中,a1=$\frac{1}{2}$,对任意的n∈N*,都有an+1an=an-an+1成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{$\frac{{a}_{n}}{n}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=2x+x-5的零点在区间(a,b)(a,b是整数且b-a=1)内,则a+b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.Rt△ABC的三个顶点在半径为13的球面上,两直角边的长分别为6和8,则球心到平面ABC的距离是12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)令ω=1,判断函数$F(x)=f(x)+f(x-\frac{π}{2})$的奇偶性并说明理由;
(2)已知在△ABC中,内角A,B,C的对边分别为a,b,c,若a=$\sqrt{3}$,b=2,sin B=$\frac{\sqrt{6}}{3}$,求F(x)+4cos(2A+$\frac{π}{6}$),(x∈[0,$\frac{11π}{12}$])的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题:
①若x>0,则x>sinx恒成立;
②命题“?x>0,x-lnx>0”的否定是“?x>0,x-lnx≤0”
③“命题p∨q为真”是“命题p∧q为真”的充分不必要条件;
④命题“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”
正确的是(  )
A.①④B.①②C.②④D.③④

查看答案和解析>>

同步练习册答案