精英家教网 > 高中数学 > 题目详情
5.已知角α的顶点为坐标原点,始边在x轴正半轴上,终边过点(m,-2).若cosα=$\frac{\sqrt{5}}{5}$,求
(1)tanα的值
(2)sin2α的值.

分析 (1)利用已知及三角函数的定义可得$\frac{m}{\sqrt{{m}^{2}+4}}$=$\frac{\sqrt{5}}{5}$,可得m,进而可求tanα的值.
(2)由已知可求r=$\sqrt{{m}^{2}+4}$=$\sqrt{5}$,利用三角函数的定义可求sinα,利用二倍角的正弦函数公式可求sin2α的值.

解答 (本题满分为10分)
解:(1)∵角α的顶点为坐标原点,始边在x轴正半轴上,终边过点(m,-2).若cosα=$\frac{\sqrt{5}}{5}$,
∴$\frac{m}{\sqrt{{m}^{2}+4}}$=$\frac{\sqrt{5}}{5}$,可得m=1,
∴tan$α=\frac{-2}{m}$=-2…5分
(2)∵r=$\sqrt{{m}^{2}+4}$=$\sqrt{5}$,
∴sinα=$\frac{-2}{r}$=-$\frac{2\sqrt{5}}{5}$,
∴sin2α=2sinαcosα=-$\frac{4}{5}$…10分

点评 本题主要考查了任意角的三角函数的定义,二倍角的正弦函数公式的应用,考查了数形结合思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率.
(1)求a的值并估计在一个月(按30天算)内日销售量不低于105个的天数;
(2)利用频率分布直方图估计每天销售量的平均值及方差(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知焦点在x正半轴上,顶点为坐标系原点的抛物线过点A(1,-2).
(1)求抛物线的标准方程;
(2)过抛物线的焦点F的直线l与抛物线交于两点M、N,且△MNO(O为原点)的面积为2$\sqrt{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列给出四组函数,表示同一函数的是(  )
A.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$B.f(x)=2x+1,g(x)=2x-1C.f(x)=x,g(x)=$\root{3}{{x}^{3}}$D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ex+$\frac{a}{2}$x2+bx-1.
(I)讨论导函数f′(x)在区间(0,1)上的单调性;
(Ⅱ)当f(1)=0时,函数f(x)在区间(0,1)上有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校举办2010年上海世博会知识竞赛,从参赛的高一、高二学生中各抽100人的成绩作为样本,其结果如右表:
(1)求m,n的值;
(2)在犯错误的概率不超过多少的前提下认为“高一、高二两个年级这次世博会知识竞赛的成绩有差异.参考数据:
(参考公式:k=$\frac{n(ab-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
高一高二合计
合格人数80m140
不合格人数n4060
合计100100200
P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设集合M={y|y=3-x2},N={y|y=2x2-2},则M∩N={y|-2≤y≤3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的离心率为$\frac{5}{3}$,则双曲线C的渐近线方程为(  )
A.$y=±\frac{3}{4}x$B.$y=±\frac{4}{3}x$C.$y=±\frac{{\sqrt{6}}}{3}x$D.$y=±\frac{{\sqrt{6}}}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知P为椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$上任意一点,F1,F2是椭圆上两个焦点,试确定点P的位置,使得∠F1PF2最大,并说明理由;并求出此时点P的坐标以及∠F1PF2的余弦值.

查看答案和解析>>

同步练习册答案