精英家教网 > 高中数学 > 题目详情
12.已知焦点在x正半轴上,顶点为坐标系原点的抛物线过点A(1,-2).
(1)求抛物线的标准方程;
(2)过抛物线的焦点F的直线l与抛物线交于两点M、N,且△MNO(O为原点)的面积为2$\sqrt{2}$,求直线l的方程.

分析 (1)令抛物线的方程为y2=2px(p>0).将点A(1,-2)的坐标代入方程,得p的值,可得抛物线C的方程;
(2)分类讨论,设直线的方程,与抛物线方程联立,利用韦达定理,结合面积公式,即可求直线l的方程.

解答 解:(1)令抛物线的方程为y2=2px(p>0).将点A(1,-2)的坐标代入方程,得p=2,
故所求抛物线的标准方程为y2=4x.(3分)
(2)若直线l⊥x轴,则M(1,2),N(1,-2),此时△MNO的面积为2,不合题设;(4分)
若直线l与x轴不垂直,令M(x1,y1),N(x2,y2),l:y=k(x-1)(k≠0),将其代入抛物线方程y2=4x,并整理得k2x2-2(k2+2)x+k2=0,
则x1+x2=2+$\frac{4}{{k}^{2}}$,x1•x2=1.(7分)
于是|MN|=x1+x2+p=$\frac{4+4{k}^{2}}{{k}^{2}}$
又原点到直线l的距离为d=$\frac{|k|}{\sqrt{1+{k}^{2}}}$,(9分)
则2$\sqrt{2}$=$\frac{1}{2}$|MN|•d=$\frac{1}{2}$•$\frac{4+4{k}^{2}}{{k}^{2}}$•$\frac{|k|}{\sqrt{1+{k}^{2}}}$,
解得,k=-1或1.
综上,所求直线l的方程为y=-x+1或y=x-1.(12分)

点评 本题考查抛物线的方程,考查直线与抛物线的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知直线方程为$|\begin{array}{l}{x}&{y}&{1}\\{3}&{5}&{1}\\{-2}&{3}&{1}\end{array}|$=0,则下列各点不在这条直线上的是(  )
A.(-2,3)B.(4,7)C.(3,5)D.(0.5,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若二次函数f(x)=x2+bx+c满足f(2)=f(-2),且函数的f(x)的一个根为1.
(Ⅰ) 求函数f(x)的解析式;
(Ⅱ)对任意的x∈[${\frac{1}{2}$,+∞),方程4mf(x)+f(x-1)=4-4m有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{x}$+x.
(1)判断并证明f(x)的奇偶性;
(2)证明:函数f(x)在区间(1,+∞)上为增函数;
(3)求函数f(x)在区间[1,3]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔1小时抽一包产品,称其重量(单位:克)是否合格,分别做记录,抽查数据如下:
甲车间:102,101,99,98,103,98,99;
乙车间:110,115,90,85,75,115,110.
问:(1)这种抽样是何种抽样方法;
(2)估计甲、乙两车间包装产品的质量的均值与方差,并说明哪个均值的代表性好,哪个车间包装产品的质量较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.1 887与2 091的最大公约数是51.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式$\frac{x+1}{x+2}$≥0的解集为(  )
A.{x|x≥-1或x≤-2}B.{x|-2≤x≤-1}C.{x|1≤x≤2}D.{x|x≥-1或x<-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知角α的顶点为坐标原点,始边在x轴正半轴上,终边过点(m,-2).若cosα=$\frac{\sqrt{5}}{5}$,求
(1)tanα的值
(2)sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.Rt△ABC的三个顶点在半径为13的球面上,两直角边的长分别为6和8,则球心到平面ABC的距离是12.

查看答案和解析>>

同步练习册答案