精英家教网 > 高中数学 > 题目详情
3.若二次函数f(x)=x2+bx+c满足f(2)=f(-2),且函数的f(x)的一个根为1.
(Ⅰ) 求函数f(x)的解析式;
(Ⅱ)对任意的x∈[${\frac{1}{2}$,+∞),方程4mf(x)+f(x-1)=4-4m有解,求实数m的取值范围.

分析 (Ⅰ) 利用函数的零点,即可求函数f(x)的解析式;
(Ⅱ)由题意可得4m2(x2-1)+(x-1)2-1+4m2-4≥0在$x∈[\frac{1}{2},+∞)$上有解,反例变量,构造函数,利用二次函数的性质求解即可.

解答 解:(Ⅰ)∵f(2)=f(-2)且f(1)=0,函数的f(x)的一个根为1,b+c=0,
f(2)=f(-2)可得:4+2b+c=4-2b+c,
∴b=0,c=-1,
∴f(x)=x2-1.(5分)
(Ⅱ)由题意知:4m2(x2-1)+(x-1)2-1+4m2-4≥0在$x∈[\frac{1}{2},+∞)$上有解,
整理得${m^2}≥\frac{1}{x^2}+\frac{1}{2x}-\frac{1}{4}$在$x∈[\frac{1}{2},+∞)$上有解,
令g(x)=$\frac{1}{x^2}+\frac{1}{2x}-\frac{1}{4}={(\frac{1}{x}+\frac{1}{4})^2}-\frac{5}{16}$,
∵$x∈[\frac{1}{2},+∞)$,∴$\frac{1}{x}∈({0,2}]$
当$\frac{1}{x}=2$时,函数g(x)得最大值$\frac{19}{4}$,
所以$-\frac{1}{4}<m≤\frac{19}{4}$.(12分)

点评 本题考查二次函数的解析式的求法,二次函数的性质的应用,构造法的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=lg(ax-1)-lg(x-1)在区间[2,+∞)上是增函数,则a的取值范围是$\frac{1}{2}$<a<!.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在[-2,1]上的某连续函数y=f(x)部分函数值如表:
x-2-101
f(x)-1.5-10.82
有同学仅根据表中数据作出了下列论断:
①函数y=f(x)在[-2,1]上单调递增;   ②函数y=f(x)在[-2,1]上恰有一个零点;
③方程f(x)=0在[-2,-1]上必无实根.④方程f(x)-1=0必有实根.
其中正确的论断个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率.
(1)求a的值并估计在一个月(按30天算)内日销售量不低于105个的天数;
(2)利用频率分布直方图估计每天销售量的平均值及方差(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知定义在R上的函数f(x),满足对任意的x,y∈R,都有f(x+y)=f(x)+f(y).当x>0时,f(x)<0.且f(3)=-4.
(Ⅰ)求f(0)的值;
(Ⅱ)判断并证明函数f(x)在R上的奇偶性;
(Ⅲ)在区间[-9,9]上,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=2-|x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,满足“f(x+y)=f(x)f(y)”且在定义域内为单调递增函数的是(  )
A.f(x)=x${\;}^{\frac{1}{2}}$B.f(x)=x3C.f(x)=log2xD.f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知焦点在x正半轴上,顶点为坐标系原点的抛物线过点A(1,-2).
(1)求抛物线的标准方程;
(2)过抛物线的焦点F的直线l与抛物线交于两点M、N,且△MNO(O为原点)的面积为2$\sqrt{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设集合M={y|y=3-x2},N={y|y=2x2-2},则M∩N={y|-2≤y≤3}.

查看答案和解析>>

同步练习册答案