精英家教网 > 高中数学 > 题目详情
15.已知P为椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$上任意一点,F1,F2是椭圆上两个焦点,试确定点P的位置,使得∠F1PF2最大,并说明理由;并求出此时点P的坐标以及∠F1PF2的余弦值.

分析 由椭圆方程求出椭圆的长轴长及焦距,在焦点三角形中利用余弦定理及基本不等式求得答案.

解答 解:由椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$,得a2=9,∴a=3,2a=6.
b2=4,c2=a2-b2=5,
则|PF1|+|PF2|=6,
∴cos∠F1PF2=$\frac{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-|{F}_{1}{F}_{2}{|}^{2}}{2|P{F}_{1}||P{F}_{2}|}$=$\frac{(|P{F}_{1}|+|P{F}_{2}|)^{2}-2|P{F}_{1}||P{F}_{2}|-4{c}^{2}}{2|P{F}_{1}||P{F}_{2}|}$
=$\frac{4{b}^{2}}{2|P{F}_{1}||P{F}_{2}|}-1$$≥\frac{16}{2×(\frac{2a}{2})^{2}}-1$=$\frac{16}{18}-1=-\frac{1}{9}$,
当且仅当|PF1|=|PF2|,即P为椭圆短轴的两个端点时∠F1PF2最大,
cos∠F1PF2=$-\frac{1}{9}$,此时P(0,±2).

点评 本题考查椭圆的简单性质,考查了焦点三角形中余弦定理的应用,训练了利用基本不等式求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知角α的顶点为坐标原点,始边在x轴正半轴上,终边过点(m,-2).若cosα=$\frac{\sqrt{5}}{5}$,求
(1)tanα的值
(2)sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.Rt△ABC的三个顶点在半径为13的球面上,两直角边的长分别为6和8,则球心到平面ABC的距离是12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)令ω=1,判断函数$F(x)=f(x)+f(x-\frac{π}{2})$的奇偶性并说明理由;
(2)已知在△ABC中,内角A,B,C的对边分别为a,b,c,若a=$\sqrt{3}$,b=2,sin B=$\frac{\sqrt{6}}{3}$,求F(x)+4cos(2A+$\frac{π}{6}$),(x∈[0,$\frac{11π}{12}$])的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$f(x)=\frac{{2{{(x-1)}^2}}}{x},g(x)=ax+5-2a(a>0)$,若对于任意x1∈[1,2],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则a的取值范围是(  )
A.[4,+∞)B.(0,$\frac{5}{2}$)C.[$\frac{5}{2}$,4]D.[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在下列各三角函数中,负值的个数是(  )
①$sin(-{660^{{°^{\;}}}})$,②cos(-740°),③cos570°,④sin(-420°)
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)是奇函数,且当x>0时,f(x)=x2-2x+2,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题:
①若x>0,则x>sinx恒成立;
②命题“?x>0,x-lnx>0”的否定是“?x>0,x-lnx≤0”
③“命题p∨q为真”是“命题p∧q为真”的充分不必要条件;
④命题“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”
正确的是(  )
A.①④B.①②C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2x-$\frac{b}{x}$,(b>0),证明:f(x)在(0,+∞)上单调递增.

查看答案和解析>>

同步练习册答案