精英家教网 > 高中数学 > 题目详情
随机变量ξ的分布列如图,其中a,b,成等差数列,则        .
ξ
-1
0
1
P
a
b


试题分析:根据题意,由于分布列中概率和为1,则可知,a+b+0.5=1,a+b=0.5,则由a,b,成等差数列知2b=a+
故可知,则可知,故可知答案为
点评:主要是考查了分布列的性质以及等差数列的性质的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知正方形的边长为2,分别是边的中点.
(1)在正方形内部随机取一点,求满足的概率;
(2)从这八个点中,随机选取两个点,记这两个点之间的距离为,求随机变量的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有一种游戏规则如下:口袋里有5个红球和5个黄球,一次摸出5个,若颜色相同则得100分,若4个球颜色相同,另一个不同,则得50分,其他情况不得分,小张摸一次得分的期望是          分.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

箱中有3个黑球,6个白球,每个球被取到的概率相同,箱中没有球.我们把从箱中取1个球放入箱中,然后在箱中补上1个与取走的球完全相同的球,称为一次操作,这样进行三次操作.
(1)分别求箱中恰有1个、2个、3个白球的概率;
(2)从箱中一次取出2个球,记白球的个数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数学试题中有12道单项选择题,每题有4个选项。某人对每道题都随机选其
中一个答案(每个选项被选出的可能性相同),求答对多少题的概率最大?并求出此种情况下概
率的大小.(可保留运算式子)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在1,2,3,…,9这9个自然数中,任取3个数,
(1)记Y表示“任取的3个数中偶数的个数”,求随机变量Y的分布列及其期望;
(2)记X为3个数中两数相邻的组数,例如取出的数为1,2,3,则有这两组相邻的数1,2和2,3,此时X的值为2,求随机变量X的分布列及其数学期望E(X).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设随机变量X,则P(X=3)的值是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)某重点高校数学教育专业的三位毕业生甲、乙、丙参加了一所中学的招聘面试,面试合格者可以正式签约,毕业生甲表示只要面试合格就签约,毕业生乙和丙则约定:两人面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合格互不影响,求:
(1)至少有1人面试合格的概率;(2)签约人数X的分布列.

查看答案和解析>>

同步练习册答案