精英家教网 > 高中数学 > 题目详情
9.已知△ABC为锐角三角形,∠B,∠C的对边分别为b,c,且∠B=45°,∠C=60°,b=$\sqrt{2}$.
(1)求c;
(2)求△ABC的面积S△ABC

分析 (1)运用正弦定理可得c=$\frac{bsinC}{sinB}$,代入计算可得;
(2)求得角A,再由三角形的面积公式,代入计算即可得到所求值.

解答 解:(1)由正弦定理可得c=$\frac{bsinC}{sinB}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=$\sqrt{3}$;
(2)由∠B=45°,∠C=60°,可得A=180°-45°-60°=75°,
则△ABC的面积S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×$\sqrt{2}$×$\sqrt{3}$×$\frac{\sqrt{6}+\sqrt{2}}{4}$
=$\frac{3+\sqrt{3}}{4}$.

点评 本题考查正弦定理和三角形的面积公式的运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知在等比数列中,a1+a3=3,a4+a6=$\frac{3}{8}$.求公比q.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义域为R的奇函数f(x)的导函数为f′(x),当x≠0时,f′(x)+$\frac{f(x)}{x}$>0,若a=sin1f(sin1),b=-3f(-3),c=ln3f(ln3),则a,b,c的大小关系是b>c>a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知圆O:x2+y2=4和圆M:(x-3)2+(y-2)2=1.若直线l被圆O和圆M截得的弦长的比为2,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.从15个球员的集合中选出11个球员组成足球队,这15个人当中有5人只能踢后卫,有8人只能踢边卫,有2人既能踢后卫又能踢边卫,假设足球队有7个人踢边卫4个人踢后卫,确定足球队可能组队的方法数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足ln(x2+2x-8)<ln(3x-2).
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.有12件产品,其中的两件是次品,从中逐个取出四件产品,则已知前两件是正品的条件下,第四件是次品的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{{A}_{10}^{2}}{{A}_{12}^{2}}$D.$\frac{{C}_{9}^{1}{C}_{2}^{1}}{{C}_{10}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简:(2a+1-b)2-(a-b)(a+2b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.根据下面数列{an}的通项公式,写出它的第10项.
(1)an=(-1)n+1•$\frac{n+1}{2n-1}$;
(2)an=1+cos$\frac{(n-1)π}{2}$;
(3)请判断$\frac{51}{99}$是不是第(1)小题中的那个数列的项.

查看答案和解析>>

同步练习册答案