精英家教网 > 高中数学 > 题目详情
9.化简(2${\;}^{\frac{1}{32}}$+1)(2${\;}^{\frac{1}{16}}$+1)(2${\;}^{\frac{1}{8}}$+1)(2${\;}^{\frac{1}{4}}$+1)(2${\;}^{\frac{1}{2}}$+1)得(  )
A.(2${\;}^{\frac{1}{32}}$-1)B.(2${\;}^{\frac{1}{32}}$+1)-1C.(2${\;}^{\frac{1}{32}}$+1)D.(2${\;}^{\frac{1}{32}}$-1)-1

分析 把分子分母同时乘以${2}^{\frac{1}{32}}-1$,循环运用平方差公式得答案.

解答 解:(2${\;}^{\frac{1}{32}}$+1)(2${\;}^{\frac{1}{16}}$+1)(2${\;}^{\frac{1}{8}}$+1)(2${\;}^{\frac{1}{4}}$+1)(2${\;}^{\frac{1}{2}}$+1)
=$\frac{({2}^{\frac{1}{32}}-1)({2}^{\frac{1}{32}}+1)({2}^{\frac{1}{16}}+1)({2}^{\frac{1}{8}}+1)({2}^{\frac{1}{4}}+1)({2}^{\frac{1}{2}}+1)}{{2}^{\frac{1}{32}}-1}$
=$\frac{({2}^{\frac{1}{16}}-1)({2}^{\frac{1}{16}}+1)({2}^{\frac{1}{8}}+1)({2}^{\frac{1}{4}}+1)({2}^{\frac{1}{2}}+1)}{{2}^{\frac{1}{32}}-1}$
=$\frac{({2}^{\frac{1}{8}}-1)({2}^{\frac{1}{8}}+1)({2}^{\frac{1}{4}}+1)({2}^{\frac{1}{2}}+1)}{{2}^{\frac{1}{32}}-1}$
=$\frac{({2}^{\frac{1}{4}}-1)({2}^{\frac{1}{4}}+1)({2}^{\frac{1}{2}}+1)}{{2}^{\frac{1}{32}}-1}$
=$\frac{({2}^{\frac{1}{2}}-1)({2}^{\frac{1}{2}}+1)}{{2}^{\frac{1}{32}}-1}$
=$\frac{1}{{2}^{\frac{1}{32}}-1}$
=$({2}^{\frac{1}{32}}-1)^{-1}$.
故选:D.

点评 本题考查根式与分数指数幂的化简运算,考查了平方差公式的运用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设集合A={x|(x-3)(x-m)=0},集合B={x|(x-a)(x-b)=0},关于x的方程ax+4=2x-b有无数个解.
(1)求实数a,b的值;
(2)求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合M,N,I的关系如图,则N∩(∁1M)=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且过点($\sqrt{2}$,1).
(1)求椭圆C的方程;
(2)设P是椭圆C长轴上的一个动点,过P作斜率为$\frac{\sqrt{2}}{2}$的直线l交椭圆C于A,B两点,求证:|PA|2+|PB|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=f(2x-3)的定义域是[-2,3],求函数y=f(x+2)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设集合A={x2,x,xy}、B={1,x,y},若集合A、B所含元素相同,求实数x、y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.判断下列函数是否是周期函数,若是则求其周期.
(1)f(x)=cos2x;(2)f(x)=tan(x+$\frac{π}{4}$);
(3)f(x)=|sin$\frac{x}{2}$|;(4)f(x)=sinx+$\frac{1}{2}$sin2x;
(5)f(x)=2sin($\frac{3}{4}$x+1);(6)f(x)=xsinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.关于x的不等式x2+2ax-8<0的解集为{x|-2<x<4},则实数a的值为(  )
A.5B.1C.-1D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设A是由满足不等式x<6的自然数组成的集合,若a∈A,且3a∈A,则a的值为0或1.

查看答案和解析>>

同步练习册答案