精英家教网 > 高中数学 > 题目详情
若命题“?x∈[-1,+∞),x2-2ax+2≥a是真命题,求实数a的取值范围.
考点:全称命题
专题:简易逻辑
分析:这是一个不等式恒成立问题,可以利用二次函数的性质解决问题.
解答: 解:由题意得x2-2ax+2≥a在区间[-1,+∞)上恒成立.
即(x-a)2≥a2+a-2在[-1,+∞)上恒成立.
①当a≤-1时,只需(-1-a)2≥a2+a-2成立,解得a≥-3.所以此时-3≤a≤-1即为所求;
②当a>-1时,只需0≥a2+a-2成立,解得-2≤a≤1,所以此时-1<a≤1.
综上-3≤a≤1即为所求.
点评:本题考查了不等式在指定区间上的恒成立问题,一般的会利用函数的单调性研究最值,然后构造不等式解之即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4x,x∈[1,5),则此函数的值域为(  )
A、[-4,+∞)
B、[-3,5)
C、[-4,5]
D、[-4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

设有集合A={x|x2-[x]=2}和B={x||x|<2},求A∩B和A∪B(其中[x]表示不超过实数x之值的最大整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为(2
2
,0),且椭圆Γ上一点M到其两焦点F1,F2的距离之和为4
3

(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)设直线l:y=x+m(m∈R)与椭圆Γ交于不同两点A,B,且|AB|=3
2
.若点P(x0,2)满足|
PA
|=|
PB
|,求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦点,椭圆C过点(-
3
,1)
且与抛物线y2=-8x有一个公共的焦点.
(1)求椭圆C方程;
(2)斜率为k的直线l过右焦点F2,且与椭圆交于A,B两点,求弦AB的长;
(3)P为直线x=3上的一点,在第(2)题的条件下,若△ABP为等边三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足:①a1=1;②所有项an∈N*;③1=a1<a2<…<an<an+1<…设集合Am={n|an≤m,m∈N*},将集合Am中的元素的最大值记为bm.换句话说,bm是数列{an}中满足不等式an≤m的所有项的项数的最大值.我们称数列{bn}为数列{an}的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.
(1)若数列{an}的伴随数列为1,1,1,2,2,2,3,请写出数列{an};
(2)设an=3n-1,求数列{an}的伴随数列{bn}的前100之和;
(3)若数列{an}的前n项和Sn=
3
2
n2-
1
2
n+c(其中c常数),试求数列{an}的伴随数列{bn}前m项和Tm

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在海岸线EF一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC,该曲线段是函数y=Asin(ωx+ϕ)(A>0,ω>0,ϕ∈(0,π)),x∈[-4,0]的图象,图象的最高点为B(-1,2).边界的中间部分为长1千米的直线段CD,且CD∥EF.游乐场的后一部分边界是以O为圆心的一段圆弧
DE

(1)求曲线段FGBC的函数表达式;
(2)曲线段FGBC上的入口G距海岸线EF最近距离为1千米,现准备从入口G修一条笔直的景观路到O,求景观路GO长;
(3)如图,在扇形ODE区域内建一个平行四边形休闲区OMPQ,平行四边形的一边在海岸线EF上,一边在半径OD上,另外一个顶点P在圆弧
DE
上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
16
+
y2
9
=1中,以点M(-1,2)为中点的弦所在的直线斜率为(  )
A、
9
16
B、
9
32
C、
9
64
D、-
9
32

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别是椭圆
x2
4
+y2=1的左右焦点,若P是第一象限内该椭圆上的一点,且向量
PF1
PF2
=-
5
4
,则点,P的坐标为
 

查看答案和解析>>

同步练习册答案