精英家教网 > 高中数学 > 题目详情
一动圆和直线l:x=-
1
2
相切,并且经过点F(
1
2
,0)

(Ⅰ)求动圆的圆心θ的轨迹C的方程;
(Ⅱ)若过点P(2,0)且斜率为k的直线交曲线C于M(x1,y1),N(x2,y2)两点.
求证:OM⊥ON.
( I)∵动圆和直线l:x=-
1
2
相切,并且经过点F(
1
2
,0)

∴圆心θ到F(
1
2
,0)
的距离等于θ到定直线l:x=-
1
2
的距离,都等于圆的半径…(2分)
根据抛物线的定义,可得:圆心θ的轨迹C就是以F为焦点,l为准线的抛物线,…(3分)
设抛物线方程为y2=2px,其中
p
2
=
1
2
,解得p=1
∴抛物线方程是y2=2x,即为所求轨迹C的方程.…(6分)
( II)证明:设过点P(2,0)且斜率为k的直线的方程为
y=k(x-2)(k≠0)①…(7分)
代入y2=2x消去y,可得k2x2-2(k2+1)x+4k2=0.②…(8分)
由根与系数的关系,得x1x2=
4k2
k2
=4
.…(9分)
结合y12=2x1y22=2x2,可得y1y2=
4x2x2
=2
x2x2
=4.…(10分)
OM
ON
=x1x2+y1y2
=4-4=0,
由此可得向量
OM
ON
夹角为90°,即OM⊥ON.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

点P是以F1,F2为焦点的椭圆上的一点,过焦点F2作∠F1PF2的外角平分线的垂线,垂足为M点,则点M的轨迹是(  )
A.抛物线B.椭圆C.双曲线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

动圆C与定圆C1:(x+3)2+y2=9,C2:(x-3)2+y2=1都外切,求动圆圆心C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设直线y=ax+b与双曲线3x2-y2=1交于A、B,且以AB为直径的圆过原点,求点P(a,b)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知l1和l2是平面内互相垂直的两条直线,它们的交点为A,异于点A的两动点B、C分别在l1、l2上,且BC=3,则过A、B、C三点的动圆所形成的图形面积为(  )
A.6πB.9πC.
2
D.
9
4
π

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设A为圆(x-1)2+y2=1上的动点,PA是圆的切线且|PA|=1,则P点的轨迹方程(  )
A.(x-1)2+y2=4B.(x-1)2+y2=2C.y2=2xD.y2=-2x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(-2,0),B(2,0),直线AG,BG相交于点G,且它们的斜率之积是-
1
4

(Ⅰ)求点G的轨迹Ω的方程;
(Ⅱ)圆x2+y2=4上有一个动点P,且P在x轴的上方,点C(1,0),直线PA交(Ⅰ)中的轨迹Ω于D,连接PB,CD.设直线PB,CD的斜率存在且分别为k1,k2,若k1=λk2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别为椭圆的左、右两个焦点,若椭圆C上的点A(1,)到F1,F2两点的距离之和等于4.
(1)写出椭圆C的方程和焦点坐标;
(2)过点P(1,)的直线与椭圆交于两点D、E,若DP=PE,求直线DE的方程;
(3)过点Q(1,0)的直线与椭圆交于两点M、N,若△OMN面积取得最大,求直线MN的方程.

查看答案和解析>>

同步练习册答案