精英家教网 > 高中数学 > 题目详情
设A为圆(x-1)2+y2=1上的动点,PA是圆的切线且|PA|=1,则P点的轨迹方程(  )
A.(x-1)2+y2=4B.(x-1)2+y2=2C.y2=2xD.y2=-2x
作图可知圆心(1,0)到P点距离为
2

所以P在以(1,0)为圆心,
2
为半径的圆上,
其轨迹方程为(x-1)2+y2=2.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.
(1)求椭圆的方程;(2)若点的坐标为,不过原点的直线与椭圆相交于不同两点,设线段的中点为,且三点共线.设点到直线的距离为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过原点O的椭圆有一个焦点F(0,4),且长轴长2a=10,求此椭圆的中心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知定点A(1,0),定圆C:(x+1)2+y2=8,M为圆C上的一个动点,点P在线段AM上,点N在线段CM上,且满足
AM
=2
AP
NP
AM
=0
,则点N的轨迹方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一动圆和直线l:x=-
1
2
相切,并且经过点F(
1
2
,0)

(Ⅰ)求动圆的圆心θ的轨迹C的方程;
(Ⅱ)若过点P(2,0)且斜率为k的直线交曲线C于M(x1,y1),N(x2,y2)两点.
求证:OM⊥ON.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

矩形ABCD的四个顶点的坐标分别为A(-2,1),B(2,1),C(2,-1),D(-2,-1),过原点且互相垂直的两条直线分别与矩形的边相交于E、F、G、H四点,则四边形EGFH的面积的最小值为______,最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知O是坐标原点,点A(2,0),△AOC的顶点C在曲线y2=4(x-1)上,那么△AOC的重心G的轨迹方程是(  )
A.3y2=4(x-1)B.3y2=4(x-1)(y≠0)
C.
y2
3
=4(x-1)
D.
y2
3
=4(x-1)(y≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点A(-
3
,0),B(
3
,0)
,动点P(x,y)满足:||AP|-|BP||=2;
(1)求动点P的轨迹方程;
(2)直线mx-y+1=0与动点P的轨迹只有一个交点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆x2+ky2=1的一个焦点是(0,2),则k的值为________.

查看答案和解析>>

同步练习册答案